K Chetankumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3228299/publications.pdf

Version: 2024-02-01

840776 1125743 14 294 11 13 citations h-index g-index papers 14 14 14 171 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Poly (benzoguanamine) modified sensor for catechol in presence of hydroquinone: A voltammetric study. Journal of Electroanalytical Chemistry, 2019, 849, 113365.	3.8	43
2	Influence of Cu doping on ZnO nanoparticles for improved structural, optical, electrochemical properties and their applications in efficient detection of latent fingerprints. Chemical Data Collections, 2021, 33, 100671.	2.3	40
3	Electrochemical preparation of poly (direct yellow 11) modified pencil graphite electrode sensor for catechol and hydroquinone in presence of resorcinol: A voltammetric study. Microchemical Journal, 2020, 156, 104979.	4.5	37
4	A reliable electrochemical sensor for detection of catechol and hydroquinone at MgO/GO modified carbon paste electrode. Journal of Materials Science: Materials in Electronics, 2020, 31, 19728-19740.	2.2	28
5	Fabrication of voltammetric efficient sensor for catechol, hydroquinone and resorcinol at MgO modified pre-treated carbon paste electrode. Materials Chemistry and Physics, 2020, 252, 123231.	4.0	24
6	Safranin amplified carbon paste electrode sensor for analysis of paracetamol and epinephrine in presence of folic acid and ascorbic acid. Microchemical Journal, 2021, 160, 105729.	4.5	23
7	MgO and MWCNTs amplified electrochemical sensor for guanine, adenine and epinephrine. Materials Chemistry and Physics, 2021, 267, 124610.	4.0	22
8	Electrochemical sensing of catechol in presence of hydroquinone using a carbon paste electrode amplified with poly (vanillin). Chemical Data Collections, 2020, 28, 100392.	2.3	20
9	Electrochemically nitric acid pre-treated glassy carbon electrode sensor for catechol and hydroquinone: A voltammetric study. Sensors International, 2020, 1, 100001.	8.4	19
10	An efficient electrochemical sensing of hazardous catechol and hydroquinone at direct green 6 decorated carbon paste electrode. Scientific Reports, 2021, 11, 15064.	3.3	18
11	Poly (L-leucine) modified carbon paste electrode as an electrochemical sensor for the detection of paracetamol in presence of folic acid. Materials Science for Energy Technologies, 2020, 3, 626-632.	1.8	14
12	Coomassie brilliant blue G 250 modified carbon paste electrode sensor for the voltammetric detection of dihydroxybenzene isomers. Scientific Reports, 2021, 11, 15933.	3.3	5
13	Sensitive and selective sensor for 3, 4-dihydroxyphenethylamine and uric acid at poly (Orange CD) modified carbon paste electrode. Chemical Data Collections, 2021, 32, 100661.	2.3	1
14	Auramine O decorated glassy carbon electrode for the voltammetric investigation of dihydroxybenzene isomers. Chemical Data Collections, 2021, , 100791.	2.3	O