Malcolm A O'neill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3228120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A DE1 BINDING FACTOR 1–GLABRA2 module regulates rhamnogalacturonan I biosynthesis in Arabidopsis seed coat mucilage. Plant Cell, 2022, 34, 1396-1414.	6.6	14
2	Cross species multiâ€omics reveals cell wall sequestration and elevated global transcript abundance as mechanisms of boron tolerance in plants. New Phytologist, 2021, 230, 1985-2000.	7.3	25
3	Protocols for isolating and characterizing polysaccharides from plant cell walls: a case study using rhamnogalacturonan-II. Biotechnology for Biofuels, 2021, 14, 142.	6.2	14
4	ERF4 and MYB52 transcription factors play antagonistic roles in regulating homogalacturonan de-methylesterification in Arabidopsis seed coat mucilage. Plant Cell, 2021, 33, 381-403.	6.6	32
5	Locating Methyl-Etherified and Methyl-Esterified Uronic Acids in the Plant Cell Wall Pectic Polysaccharide Rhamnogalacturonan II. SLAS Technology, 2020, 25, 329-344.	1.9	19
6	Identification of two functional xyloglucan galactosyltransferase homologs <i>BrMUR3</i> and <i>BoMUR3</i> in brassicaceous vegetables. PeerJ, 2020, 8, e9095.	2.0	3
7	Changes in the abundance of cell wall apiogalacturonan and xylogalacturonan and conservation of rhamnogalacturonan II structure during the diversification of the Lemnoideae. Planta, 2018, 247, 953-971.	3.2	36
8	Genome-Wide Analysis of Sorghum GT47 Family Reveals Functional Divergences of MUR3-Like Genes. Frontiers in Plant Science, 2018, 9, 1773.	3.6	25
9	Suppression of Arabidopsis <scp>GGLT</scp> 1 affects growth by reducing the Lâ€galactose content and borate crossâ€linking of rhamnogalacturonanâ€ <scp>II</scp> . Plant Journal, 2018, 96, 1036-1050.	5.7	33
10	DGE-seq analysis of MUR3-related Arabidopsis mutants provides insight into how dysfunctional xyloglucan affects cell elongation. Plant Science, 2017, 258, 156-169.	3.6	22
11	Boron-bridged RG-II and calcium are required to maintain the pectin network of the Arabidopsis seed mucilage ultrastructure. Plant Molecular Biology, 2017, 94, 267-280.	3.9	21
12	Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance. Carbohydrate Polymers, 2017, 168, 94-102.	10.2	21
13	Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature, 2017, 544, 65-70.	27.8	447
14	Structural diversity of xylans in the cell walls of monocots. Planta, 2016, 244, 589-606.	3.2	83
15	Functional Characterization of UDP-apiose Synthases from Bryophytes and Green Algae Provides Insight into the Appearance of Apiose-containing Glycans during Plant Evolution. Journal of Biological Chemistry, 2016, 291, 21434-21447.	3.4	16
16	Galactose-Depleted Xyloglucan Is Dysfunctional and Leads to Dwarfism in Arabidopsis. Plant Physiology, 2015, 167, 1296-1306.	4.8	90
17	Xyloglucan, galactomannan, glucuronoxylan, and rhamnogalacturonan I do not have identical structures in soybean root and root hair cell walls. Planta, 2015, 242, 1123-1138.	3.2	16
18	Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. Carbohydrate Research, 2015, 402, 56-66.	2.3	110

MALCOLM A O'NEILL

#	Article	IF	CITATIONS
19	Transport of Boron by the <i>tassel-less1</i> Aquaporin Is Critical for Vegetative and Reproductive Development in Maize Â. Plant Cell, 2014, 26, 2978-2995.	6.6	113
20	A Galacturonic Acid–Containing Xyloglucan Is Involved in <i>Arabidopsis</i> Root Hair Tip Growth. Plant Cell, 2012, 24, 4511-4524.	6.6	106
21	The Synthesis and Origin of the Pectic Polysaccharide Rhamnogalacturonan II – Insights from Nucleotide Sugar Formation and Diversity. Frontiers in Plant Science, 2012, 3, 92.	3.6	47
22	The ability of land plants to synthesize glucuronoxylans predates the evolution of tracheophytes. Glycobiology, 2012, 22, 439-451.	2.5	63
23	Comparison of Arabinoxylan Structure in Bioenergy and Model Grasses. Industrial Biotechnology, 2012, 8, 222-229.	0.8	34
24	4- <i>O</i> -methylation of glucuronic acid in <i>Arabidopsis</i> glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14253-14258.	7.1	164
25	Structural Characterization of the Heteroxylans from Poplar and Switchgrass. , 2012, 908, 215-228.		13
26	Methods for Structural Characterization of the Products of Cellulose- and Xyloglucan-Hydrolyzing Enzymes. Methods in Enzymology, 2012, 510, 121-139.	1.0	43
27	Plant Nucleotide Sugar Formation, Interconversion, and Salvage by Sugar Recycling*. Annual Review of Plant Biology, 2011, 62, 127-155.	18.7	219
28	The charophycean green algae provide insights into the early origins of plant cell walls. Plant Journal, 2011, 68, 201-211.	5.7	226
29	Cell wall metabolism in cold-stored tomato fruit. Postharvest Biology and Technology, 2010, 57, 106-113.	6.0	52
30	Improved procedures for the selective chemical fragmentation of rhamnogalacturonans. Carbohydrate Research, 2009, 344, 1852-1857.	2.3	12
31	Synthesis and Immunological Properties of a Tetrasaccharide Portion of the B Side Chain of Rhamnogalacturonan II (RGâ€II). ChemBioChem, 2008, 9, 381-388.	2.6	21
32	Biochemical control of xylan biosynthesis — which end is up?. Current Opinion in Plant Biology, 2008, 11, 258-265.	7.1	179
33	Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants*. Glycobiology, 2008, 18, 891-904.	2.5	134
34	A Reevaluation of the Key Factors That Influence Tomato Fruit Softening and Integrity. Plant Physiology, 2007, 144, 1012-1028.	4.8	328
35	Arabidopsis irregular xylem8 and irregular xylem9: Implications for the Complexity of Glucuronoxylan Biosynthesis. Plant Cell, 2007, 19, 549-563.	6.6	396
36	A plant mutase that interconverts UDP-arabinofuranose and UDP-arabinopyranose. Glycobiology, 2007, 17, 345-354.	2.5	133

MALCOLM A O'NEILL

#	Article	IF	CITATIONS
37	The irregular xylem9 Mutant is Deficient in Xylan Xylosyltransferase Activity. Plant and Cell Physiology, 2007, 48, 1624-1634.	3.1	147
38	Selective chemical depolymerization of rhamnogalacturonans. Carbohydrate Research, 2006, 341, 474-484.	2.3	34
39	Occurrence of the Primary Cell Wall Polysaccharide Rhamnogalacturonan II in Pteridophytes, Lycophytes, and Bryophytes. Implications for the Evolution of Vascular Plants. Plant Physiology, 2004, 134, 339-351.	4.8	203
40	l-Galactose replaces l-fucose in the pectic polysaccharide rhamnogalacturonanÂll synthesized by the l-fucose-deficient mur1 Arabidopsis mutant. Planta, 2004, 219, 147-157.	3.2	78
41	RHAMNOGALACTURONAN II: Structure and Function of a Borate Cross-Linked Cell Wall Pectic Polysaccharide. Annual Review of Plant Biology, 2004, 55, 109-139.	18.7	774
42	Polysaccharides from grape berry cell walls. Part II. Structural characterization of the xyloglucan polysaccharides. Carbohydrate Polymers, 2003, 53, 253-261.	10.2	64
43	Primary structure of the 2-O-methyl-α-l-fucose-containing side chain of the pectic polysaccharide, rhamnogalacturonan II. Carbohydrate Research, 2003, 338, 341-352.	2.3	66
44	Analysis of Xyloglucan Fucosylation in Arabidopsis. Plant Physiology, 2003, 132, 768-778.	4.8	82
45	Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 2001, 57, 929-967.	2.9	1,596
46	Requirement of Borate Cross-Linking of Cell Wall Rhamnogalacturonan II for Arabidopsis Growth. Science, 2001, 294, 846-849.	12.6	599
47	Structural characterization of the pectic polysaccharide rhamnogalacturonan II: evidence for the backbone location of the aceric acid-containing oligoglycosyl side chain. Carbohydrate Research, 2000, 326, 277-294.	2.3	105
48	The Pore Size of Non-Graminaceous Plant Cell Walls Is Rapidly Decreased by Borate Ester Cross-Linking of the Pectic Polysaccharide Rhamnogalacturonan II. Plant Physiology, 1999, 121, 829-838.	4.8	456
49	The Plant Cell Wall Polysaccharide Rhamnogalacturonan II Self-assembles into a Covalently Cross-linked Dimer. Journal of Biological Chemistry, 1999, 274, 13098-13104.	3.4	175
50	The transient nature of the oligogalaturonide-induced ion fluxes of tobacco cells is not correlated with fragmentation of the oligogalacturonides. Plant Journal, 1998, 16, 305-311.	5.7	25
51	Biological Activity of Reducing-End-Derivatized Oligogalacturonides in Tobacco Tissue Cultures1. Plant Physiology, 1998, 116, 1289-1298.	4.8	43
52	Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester. In vitro conditions for the formation and hydrolysis of the dimer Journal of Biological Chemistry, 1997, 272, 3869.	3.4	4
53	Rhamnogalacturonan-II, a Pectic Polysaccharide in the Walls of Growing Plant Cell, Forms a Dimer That Is Covalently Cross-linked by a Borate Ester. Journal of Biological Chemistry, 1996, 271, 22923-22930.	3.4	472
54	Structural characterization of red wine rhamnogalacturonan II. Carbohydrate Research, 1996, 290, 183-197.	2.3	203

MALCOLM A O'NEILL

#	Article	IF	CITATIONS
55	Structural characterization of the pectic polysaccharide, rhamnogalacturonan-II. Carbohydrate Research, 1995, 271, 15-29.	2.3	100
56	The backbone of the pectic polysaccharide rhamnogalacturonan I is cleaved by an endohydrolase and an endolyase. Glycobiology, 1995, 5, 783-789.	2.5	56
57	Isolation and structural characterization of endo-rhamnogalacturonase-generated fragments of the backbone of rhamnogalacturonan I. Carbohydrate Research, 1994, 264, 83-96.	2.3	43
58	Purification and characterization of biologically active 1,4-linked α-d-oligogalacturonides after partial digestion of polygalacturonic acid with endopolygalacturonase. Carbohydrate Research, 1993, 247, 9-20.	2.3	75
59	Structural characterization of endo-glycanase-generated oligoglycosyl side chains of rhamnogalacturonan I. Carbohydrate Research, 1993, 243, 359-371.	2.3	93
60	Oligosaccharins—oligosaccharides that regulate growth, development and defence responses in plants. Glycobiology, 1992, 2, 181-198.	2.5	301
61	Oligosaccharins: oligosaccharide regulatory molecules. Accounts of Chemical Research, 1992, 25, 77-83.	15.6	79
62	Evidence that the acidic polysaccharide secreted by Agrobacterium radiobacter (ATCC 53271) has a seventeen glycosyl-residue repeating unit. Carbohydrate Research, 1992, 226, 131-154.	2.3	5
63	A comparison of the polysaccharides extracted from dried and non-dried walls of suspension-cultured sycamore cells. Phytochemistry, 1991, 30, 3903-3908.	2.9	9
64	Structural analysis of an acidic polysaccharide secreted by Xanthobacter sp. (ATCC 53272). Carbohydrate Research, 1990, 206, 289-296.	2.3	26
65	Static and dynamic light-scattering studies of pectic polysaccharides from the middle lamellae and primary cell walls of cider apples. Carbohydrate Research, 1987, 165, 53-68.	2.3	49
66	Structure of the extracellular gelling polysaccharide produced by Enterobacter (NCIB 11870) species. Carbohydrate Research, 1986, 148, 63-69.	2.3	41
67	Structure of the extracellular polysaccharide produced by the bacterium Alcaligenes (ATCC 31555) species. Carbohydrate Research, 1986, 147, 295-313.	2.3	50
68	Structural features of the mucilage from the stem pith of kiwifruit (actinidia deliciosa): part I, structure of the inner core. Carbohydrate Research, 1986, 153, 97-106.	2.3	18
69			

#	Article	IF	CITATIONS
73	Methylation analysis of cell wall glycoproteins and glycopeptides from Chlamydomonas reinhardii. Phytochemistry, 1981, 20, 25-28.	2.9	33
74	Methylation analysis of cell-wall material from parenchymatous tissues of phaseolus vulgaris and phaseolus coccineus. Carbohydrate Research, 1980, 79, 115-124.	2.3	40