
Olivier Lebel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3227434/publications.pdf Version: 2024-02-01

OLIVIED FREE

#	Article	IF	CITATIONS
1	Porous Crystal Derived from a Tricarboxylate Linker with Two Distinct Binding Motifs. Journal of the American Chemical Society, 2007, 129, 15740-15741.	6.6	219
2	Linker-Directed Vertex Desymmetrization for the Production of Coordination Polymers with High Porosity. Journal of the American Chemical Society, 2010, 132, 13941-13948.	6.6	184
3	A New Class of Selective Low-Molecular-Weight Gelators Based on Salts of Diaminotriazinecarboxylic Acids. Chemistry of Materials, 2006, 18, 3616-3626.	3.2	78
4	Submolecular Plasticization Induced by Photons in Azobenzene Materials. Journal of the American Chemical Society, 2015, 137, 13510-13517.	6.6	76
5	Disperse and disordered: a mexylaminotriazine-substituted azobenzene derivative with superior glass and surface relief grating formation. Journal of Materials Chemistry C, 2014, 2, 841-847.	2.7	64
6	The Dark Side of Crystal Engineering:Â Creating Glasses from Small Symmetric Molecules that Form Multiple Hydrogen Bonds. Journal of the American Chemical Society, 2006, 128, 10372-10373.	6.6	63
7	Anarchy in the solid state: structural dependence on glass-forming ability in triazine-based molecular glasses. Tetrahedron, 2009, 65, 7393-7402.	1.0	40
8	Role of hydrogen bonding in the formation of glasses by small molecules: a triazine case study. Journal of Materials Chemistry, 2009, 19, 2747.	6.7	39
9	A practical guide to arylbiguanides — Synthesis and structural characterization. Canadian Journal of Chemistry, 2005, 83, 615-625.	0.6	35
10	Influence of Hydrogen Bonding on the Kinetic Stability of Vapor-Deposited Glasses of Triazine Derivatives. Journal of Physical Chemistry B, 2017, 121, 2350-2358.	1.2	28
11	Functionalization of molecular glasses: effect on the glass transition temperature. Journal of Materials Chemistry C, 2013, 1, 1037-1042.	2.7	26
12	<i>T</i> _g and Rheological Properties of Triazine-Based Molecular Glasses: Incriminating Evidence Against Hydrogen Bonds. Journal of Physical Chemistry B, 2009, 113, 14884-14891.	1.2	25
13	Surface relief grating growth in thin films of mexylaminotriazine-functionalized glass-forming azobenzene derivatives. New Journal of Chemistry, 2015, 39, 9162-9170.	1.4	25
14	Interfacial modification of the electron collecting layer of low-temperature solution-processed organometallic halide photovoltaic cells using an amorphous perylenediimide. Solar Energy Materials and Solar Cells, 2017, 160, 294-300.	3.0	25
15	A Glass Forming Module for Organic Molecules: Making Tetraphenylporphyrin Lose its Crystallinity. Organic Letters, 2010, 12, 1896-1899.	2.4	22
16	One ring to rule them all: effect of aryl substitution on glass-forming ability in mexylaminotriazine molecular glasses. Tetrahedron, 2012, 68, 10130-10144.	1.0	20
17	Synthesis, characterization and photovoltaic performance of novel glass-forming perylenediimide derivatives. Organic Electronics, 2016, 34, 146-156.	1.4	20
18	Simple Unbiased Hot-Electron Polarization-Sensitive Near-Infrared Photodetector. ACS Applied Materials & Interfaces, 2018, 10, 11862-11871.	4.0	19

OLIVIER LEBEL

#	Article	IF	CITATIONS
19	Erasure of surface relief gratings in azobenzene molecular glasses by localized heating using a CO ₂ laser. Journal of Materials Chemistry C, 2018, 6, 1083-1091.	2.7	19
20	Unraveling the nucleation and growth of spontaneous surface relief gratings. Optical Materials, 2016, 62, 378-391.	1.7	18
21	Syntheses and Structures of Isomeric Diaminotriazinyl-Substituted 2,2′-Bipyridines and 1,10-Phenanthrolines. Journal of Organic Chemistry, 2011, 76, 1333-1341.	1.7	17
22	Heads vs. tails: a double-sided study of the influence of substituents on the glass-forming ability and stability of aminotriazine molecular glasses. New Journal of Chemistry, 2013, 37, 3881.	1.4	17
23	Unraveling the interplay between hydrogen bonding and rotational energy barrier to fine-tune the properties of triazine molecular glasses. Physical Chemistry Chemical Physics, 2016, 18, 1681-1692.	1.3	16
24	Influence of Hydrogen Bonding on the Surface Diffusion of Molecular Glasses: Comparison of Three Triazines. Journal of Physical Chemistry B, 2017, 121, 7221-7227.	1.2	16
25	Solid-state showdown: Comparing the photovoltaic performance of amorphous and crystalline small-molecule diketopyrrolopyrrole acceptors. Organic Electronics, 2017, 48, 230-240.	1.4	14
26	Efficiency enhancement of ternary blend organic photovoltaic cells with molecular glasses as guest acceptors. Organic Electronics, 2018, 53, 74-82.	1.4	14
27	Photoinduction of spontaneous surface relief gratings on Azo DR1 glass. Optics Letters, 2016, 41, 2958.	1.7	13
28	Photoactive/Passive Molecular Glass Blends: An Efficient Strategy to Optimize Azomaterials for Surface Relief Grating Inscription. ACS Applied Materials & Interfaces, 2017, 9, 798-808.	4.0	12
29	Hydrogen-bonded networks in crystals built from bis(biguanides) and their salts. Canadian Journal of Chemistry, 2006, 84, 1426-1433.	0.6	11
30	To Cyclopropanate or Not To Cyclopropanate? A Look at the Effect of Cyclopropanation on the Performance of Biofuels. Energy & Fuels, 2010, 24, 5257-5263.	2.5	11
31	Glass versus Crystal: A Balancing Act between Competing Intermolecular Interactions. Crystal Growth and Design, 2017, 17, 2365-2373.	1.4	11
32	Synthesis, structure and magnetism of homodinuclear complexes of Co, Ni and Cu supported by a novel bitriazine scaffold. Dalton Transactions, 2011, 40, 5009.	1.6	10
33	Towards amorphous solution-processed small-molecule photovoltaic cells by design. Organic Electronics, 2017, 49, 382-392.	1.4	10
34	Transfer of chirality from light to a Disperse Red 1 molecular glass surface. Optics Letters, 2017, 42, 4845.	1.7	8
35	The BrÃnsted-Lowry Reaction Revisited: Glass-Forming Properties of Salts of 1,5-Dimexylbiguanide. Crystal Growth and Design, 2010, 10, 2734-2745.	1.4	6
36	Design and fabrication of constant-pitch circular surface-relief diffraction gratings on disperse red 1 glass. Optics Letters, 2014, 39, 3445.	1.7	6

OLIVIER LEBEL

#	Article	IF	CITATIONS
37	Electric-Field-Induced Nanoscale Surface Patterning in Mexylaminotriazine-Functionalized Molecular Glass Derivatives. Langmuir, 2016, 32, 5646-5652.	1.6	6
38	Second-order nonlinear optical properties of mexylaminotriazine-functionalized glass-forming azobenzene derivatives. Optical Materials, 2016, 60, 258-263.	1.7	6
39	Azobenzene molecular glasses with tuned glass transition temperatures: from optimal light-induced motion to self-erasable gratings. Journal of Materials Chemistry C, 2020, 8, 6203-6213.	2.7	5
40	Water-triggered spontaneous surface patterning in thin films of mexylaminotriazine molecular glasses. Journal of Materials Chemistry C, 2015, 3, 4729-4736.	2.7	4
41	Deceleration of thermal ring closure in a glass-forming mexylaminotriazine-substituted merocyanine (MC) linked to intramolecular hydrogen bonding. New Journal of Chemistry, 2017, 41, 940-947.	1.4	4
42	Triazine-based molecular glasses frustrate the crystallization of barbiturates. CrystEngComm, 2019, 21, 1734-1741.	1.3	4
43	Dopant-Free Mexylaminotriazine Molecular Glass Hole Transport Layer for Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	2.5	4
44	Transition metal molecular glasses by design: mexylaminotriazine-functionalized salicylaldehyde imine ligands. New Journal of Chemistry, 2019, 43, 8694-8703.	1.4	3
45	Revisiting the Optimal Nanoâ€Morphology: Towards Amorphous Organic Photovoltaics. Chemical Record, 2019, 19, 1028-1038.	2.9	3
46	Glass engineering of aminotriazine-based materials with sub-ambient <i>T</i> _g and high kinetic stability. CrystEngComm, 2020, 22, 4275-4288.	1.3	3
47	Low-cost molecular glass hole transport material for perovskite solar cells. Japanese Journal of Applied Physics, 2021, 60, SBBF12.	0.8	2

48 Chiral diffraction gratings., 2017,,.

0