List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3227409/publications.pdf Version: 2024-02-01

		94269	143772
129	4,543	37	57
papers	citations	h-index	g-index
134 all docs	134 docs citations	134 times ranked	5246 citing authors

ΙΔΝΟΙΝ ΕΛΝ

#	Article	IF	CITATIONS
1	Atherosclerosis: Known and unknown. Pathology International, 2022, 72, 151-160.	0.6	78
2	Use of Rabbit Models to Study. Methods in Molecular Biology, 2022, 2419, 413-431.	0.4	1
3	C1q/Tumor Necrosis Factor-Related Protein 9: Basics and Therapeutic Potentials. Frontiers in Physiology, 2022, 13, 816218.	1.3	1
4	Is apoCIII-Lowering A Double-Edged Sword?. Journal of Atherosclerosis and Thrombosis, 2022, , .	0.9	0
5	Establishing an Appropriate Pressure for the Transparent Disc Method to Distinguish Early Pressure Injury and Blanchable Erythema. Diagnostics, 2022, 12, 1075.	1.3	4
6	Hepatocellular cystathionine γ lyase/hydrogen sulfide attenuates nonalcoholic fatty liver disease by activating farnesoid X receptor. Hepatology, 2022, 76, 1794-1810.	3.6	24
7	Pathological Investigations of Intracranial Atherosclerosis Using Multiple Hypercholesterolemic Rabbit Models. Frontiers in Endocrinology, 2022, 13, .	1.5	Ο
8	Human apolipoprotein A-II reduces atherosclerosis in knock-in rabbits. Atherosclerosis, 2021, 316, 32-40.	0.4	18
9	Isolation and Analysis of Plasma Lipoproteins by Ultracentrifugation. Journal of Visualized Experiments, 2021, , .	0.2	4
10	Genetically Modified Rabbits for Cardiovascular Research. Frontiers in Genetics, 2021, 12, 614379.	1.1	9
11	Whole-body insulin resistance and energy expenditure indices, serum lipids, and skeletal muscle metabolome in a state of lipoprotein lipase overexpression. Metabolomics, 2021, 17, 26.	1.4	6
12	Endothelial Lipase Exerts its Anti-Atherogenic Effect through Increased Catabolism of β-VLDLs. Journal of Atherosclerosis and Thrombosis, 2021, 28, 157-168.	0.9	3
13	Strategies for Highly Efficient Rabbit Sperm Cryopreservation. Animals, 2021, 11, 1220.	1.0	9
14	Reductively modified albumin attenuates DSS-Induced mouse colitis through rebalancing systemic redox state. Redox Biology, 2021, 41, 101881.	3.9	30
15	Dietary-Induced Elevations of Triglyceride-Rich Lipoproteins Promote Atherosclerosis in the Low-Density Lipoprotein Receptor Knockout Syrian Golden Hamster. Frontiers in Cardiovascular Medicine, 2021, 8, 738060.	1.1	6
16	Fluorescent Egg White-Based Carbon Dots as a High-Sensitivity Iron Chelator for the Therapy of Nonalcoholic Fatty Liver Disease by Iron Overload in Zebrafish. ACS Applied Materials & Interfaces, 2021, 13, 54677-54689.	4.0	19
17	Apolipoprotein CIII Deficiency Protects Against Atherosclerosis in Knockout Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2095-2107.	1.1	19
18	Hyperlipidemic Rabbit Models for Anti-Atherosclerotic Drug Development. Applied Sciences (Switzerland), 2020, 10, 8681.	1.3	7

#	Article	IF	CITATIONS
19	Transgenic Rabbit Models: Now and the Future. Applied Sciences (Switzerland), 2020, 10, 7416.	1.3	9
20	iMarmot: an integrative platform for comparative and functional genomics of marmots. BMC Genomics, 2020, 21, 266.	1.2	3
21	Genetic and molecular features for hepadnavirus and plague infections in the Himalayan marmot. Genome, 2020, 63, 307-317.	0.9	2
22	Microstructure-based techniques for single-cell manipulation and analysis. TrAC - Trends in Analytical Chemistry, 2020, 129, 115940.	5.8	23
23	Macrophageâ€derived MMPâ€9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits. Journal of Cellular and Molecular Medicine, 2020, 24, 4261-4274.	1.6	32
24	"Coral Reef―Like Calcifications: Communities of Uncomplicated Calcified Nodules. Journal of Atherosclerosis and Thrombosis, 2020, 27, 1019-1021.	0.9	0
25	Connexin43 Contributes to Inflammasome Activation and Lipopolysaccharide-Initiated Acute Renal Injury <i>via</i> Modulation of Intracellular Oxidative Status. Antioxidants and Redox Signaling, 2019, 31, 1194-1212.	2.5	38
26	Cepharanthine hydrochloride degrades polyglutamine-expanded androgen receptor proteins through an autophagy pathway in neuron cells. European Journal of Pharmacology, 2019, 861, 172534.	1.7	4
27	Single-Cell-Derived Tumor-Sphere Formation and Drug-Resistance Assay Using an Integrated Microfluidics. Analytical Chemistry, 2019, 91, 8318-8325.	3.2	40
28	Several circulating miRNAs related to hyperlipidemia and atherosclerotic cardiovascular diseases. Lipids in Health and Disease, 2019, 18, 104.	1.2	24
29	Bisphenol-A induces neurodegeneration through disturbance of intracellular calcium homeostasis in human embryonic stem cells-derived cortical neurons. Chemosphere, 2019, 229, 618-630.	4.2	39
30	Generation of hyperlipidemic rabbit models using multiple sgRNAs targeted CRISPR/Cas9 gene editing system. Lipids in Health and Disease, 2019, 18, 69.	1.2	24
31	Renovascular Hypertension Aggravates Atherosclerosis in Cholesterol-Fed Rabbits. Journal of Vascular Research, 2019, 56, 28-38.	0.6	4
32	Sex hormones affect endothelial lipase-mediated lipid metabolism and atherosclerosis. Lipids in Health and Disease, 2019, 18, 226.	1.2	9
33	Extracellular vesicles derived from donor oviduct fluid improved birth rates after embryo transfer in mice. Reproduction, Fertility and Development, 2019, 31, 324.	0.1	46
34	Hypoxic and Cold Adaptation Insights from the Himalayan Marmot Genome. IScience, 2019, 11, 519-530.	1.9	34
35	Sphingolipid de novo biosynthesis is essential for intestine cell survival and barrier function. Cell Death and Disease, 2018, 9, 173.	2.7	32
36	Detection of potential new biomarkers of atherosclerosis by probe electrospray ionization mass spectrometry. Metabolomics, 2018, 14, 38.	1.4	16

#	Article	IF	CITATIONS
37	Transcriptomic analysis of the liver of cholesterol-fed rabbits reveals altered hepatic lipid metabolism and inflammatory response. Scientific Reports, 2018, 8, 6437.	1.6	12
38	Genomic and Transcriptomic Analysis of Hypercholesterolemic Rabbits: Progress and Perspectives. International Journal of Molecular Sciences, 2018, 19, 3512.	1.8	11
39	Spontaneous severe hypercholesterolemia and atherosclerosis lesions in rabbits with deficiency of low-density lipoprotein receptor (LDLR) on exon 7. EBioMedicine, 2018, 36, 29-38.	2.7	32
40	Hypertension Enhances Advanced Atherosclerosis and Induces Cardiac Death in Watanabe Heritable Hyperlipidemic Rabbits. American Journal of Pathology, 2018, 188, 2936-2947.	1.9	42
41	Salusin-α Inhibits Proliferation and Migration of Vascular Smooth Muscle Cell via Akt/mTOR Signaling. Cellular Physiology and Biochemistry, 2018, 50, 1740-1753.	1.1	23
42	Treatment of atherosclerosis by traditional Chinese medicine: Questions and quandaries. Atherosclerosis, 2018, 277, 136-144.	0.4	97
43	Establishment of a novel non‑alcoholic fatty liver disease model using cholesterol‑fed rabbits with reference to the potential role of endoplasmic reticulum stress. Molecular Medicine Reports, 2018, 18, 2898-2904.	1.1	7
44	Western diet feeding influences gut microbiota profiles in apoE knockout mice. Lipids in Health and Disease, 2018, 17, 159.	1.2	61
45	Differential Patterns of Secreted Frizzled-Related Protein 4 (SFRP4) in Adipocyte Differentiation: Adipose Depot Specificity. Cellular Physiology and Biochemistry, 2018, 46, 2149-2164.	1.1	25
46	Principles and Applications of Rabbit Models for Atherosclerosis Research. Journal of Atherosclerosis and Thrombosis, 2018, 25, 213-220.	0.9	55
47	Carbenoxolone inhibits <scp>TRPV</scp> 4 channelâ€initiated oxidative urothelial injury and ameliorates cyclophosphamideâ€induced bladder dysfunction. Journal of Cellular and Molecular Medicine, 2017, 21, 1791-1802.	1.6	14
48	Deficiency of Cholesteryl Ester Transfer Protein Protects Against Atherosclerosis in Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1068-1075.	1.1	47
49	Bre Enhances Osteoblastic Differentiation by Promoting the Mdm2-Mediated Degradation of p53. Stem Cells, 2017, 35, 1760-1772.	1.4	19
50	Increased Hepatic Expression of Endothelial Lipase Inhibits Cholesterol Diet–Induced Hypercholesterolemia and Atherosclerosis in Transgenic Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1282-1289.	1,1	30
51	Glutathione inhibits antibody and complement-mediated immunologic cell injury via multiple mechanisms. Redox Biology, 2017, 12, 571-581.	3.9	10
52	Overexpression of Cholesteryl Ester Transfer Protein Increases Macrophage-Derived Foam Cell Accumulation in Atherosclerotic Lesions of Transgenic Rabbits. Mediators of Inflammation, 2017, 2017, 1-9.	1.4	11
53	Comparative studies of three cholesteryl ester transfer proteins and their interactions with known inhibitors. PLoS ONE, 2017, 12, e0180772.	1.1	3
54	Dietary Cocoa Powder Improves Hyperlipidemia and Reduces Atherosclerosis in apoE Deficient Mice through the Inhibition of Hepatic Endoplasmic Reticulum Stress. Mediators of Inflammation, 2016, 2016, 1-11.	1.4	12

#	Article	IF	CITATIONS
55	Plasma High-Mannose and Complex/Hybrid N-Glycans Are Associated with Hypercholesterolemia in Humans and Rabbits. PLoS ONE, 2016, 11, e0146982.	1.1	6
56	Combined B, T and NK Cell Deficiency Accelerates Atherosclerosis in BALB/c Mice. PLoS ONE, 2016, 11, e0157311.	1.1	4
57	AMPK Suppresses Connexin43 Expression in the Bladder and Ameliorates Voiding Dysfunction in Cyclophosphamide-induced Mouse Cystitis. Scientific Reports, 2016, 6, 19708.	1.6	22
58	Hydrogen sulfide inhibits development of atherosclerosis through up-regulating protein S-nitrosylation. Biomedicine and Pharmacotherapy, 2016, 83, 466-476.	2.5	42
59	Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models. Scientific Reports, 2016, 6, 26942.	1.6	24
60	Protein Inhibitor of Activated STAT3 Suppresses Oxidized LDL-induced Cell Responses during Atherosclerosis in Apolipoprotein E-deficient Mice. Scientific Reports, 2016, 6, 36790.	1.6	48
61	Angiotensin II Destabilizes Coronary Plaques in Watanabe Heritable Hyperlipidemic Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 810-816.	1.1	16
62	ApoE knockout rabbits: A novel model for the study of human hyperlipidemia. Atherosclerosis, 2016, 245, 187-193.	0.4	70
63	High-fructose and high-fat diet-induced insulin resistance enhances atherosclerosis in Watanabe heritable hyperlipidemic rabbits. Nutrition and Metabolism, 2015, 12, 30.	1.3	42
64	Practical assessment of the quantification of atherosclerotic lesions in apoEâ^'/â^' mice. Molecular Medicine Reports, 2015, 12, 5298-5306.	1.1	29
65	Combined use of probucol and cilostazol with atorvastatin attenuates atherosclerosis in moderately hypercholesterolemic rabbits. Lipids in Health and Disease, 2015, 14, 82.	1.2	9
66	Carbonate Ion-Enriched Hot Spring Water Promotes Skin Wound Healing in Nude Rats. PLoS ONE, 2015, 10, e0117106.	1.1	29
67	Production of Cloned Miniature Pigs Expressing High Levels of Human Apolipoprotein(a) in Plasma. PLoS ONE, 2015, 10, e0132155.	1.1	12
68	Autocrine Human Urotensin II Enhances Macrophage-Derived Foam Cell Formation in Transgenic Rabbits. BioMed Research International, 2015, 2015, 1-8.	0.9	10
69	Bisphenol A exposure induces metabolic disorders and enhances atherosclerosis in hyperlipidemic rabbits. Journal of Applied Toxicology, 2015, 35, 1058-1070.	1.4	57
70	Motility and fertility of rabbit sperm cryopreserved using soybean lecithin as an alternative to egg yolk. Theriogenology, 2015, 84, 1172-1175.	0.9	21
71	Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine. , 2015, 146, 104-119.		259
72	Bisphenol A Exposure Enhances Atherosclerosis in WHHL Rabbits. PLoS ONE, 2014, 9, e110977.	1.1	45

#	Article	IF	CITATIONS
73	Urotensin II Promotes Atherosclerosis in Cholesterol-Fed Rabbits. PLoS ONE, 2014, 9, e95089.	1.1	15
74	Probucol Suppresses Macrophage Infiltration and MMP Expression in Atherosclerotic Plaques of WHHL Rabbits. Journal of Atherosclerosis and Thrombosis, 2014, 21, 648-658.	0.9	30
75	Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. Journal of Molecular Cell Biology, 2014, 6, 97-99.	1.5	143
76	Effects of Antisense Oligonucleotides against C-Reactive Protein on the Development of Atherosclerosis in WHHL Rabbits. Mediators of Inflammation, 2014, 2014, 1-8.	1.4	12
77	C-Reactive Protein and Arteriosclerosis. Mediators of Inflammation, 2014, 2014, 1-1.	1.4	6
78	Animal Models of C-Reactive Protein. Mediators of Inflammation, 2014, 2014, 1-7.	1.4	23
79	Homocysteine reduces protein S-nitrosylation in endothelium. International Journal of Molecular Medicine, 2014, 34, 1277-1285.	1.8	26
80	Effects of type III antifreeze protein on sperm and embryo cryopreservation in rabbit. Cryobiology, 2014, 69, 22-25.	0.3	43
81	Ubiquitin-proteasome-dependent slingshot 1 downregulation in neuronal cells inactivates cofilin to facilitate HSV-1 replication. Virology, 2014, 449, 88-95.	1.1	9
82	Effects of Cholesterol-Loaded Cyclodextrins on the Rate and the Quality of Motility in Frozen and Thawed Rabbit Sperm. Experimental Animals, 2014, 63, 149-154.	0.7	5
83	Silencing Herpes Simplex Virus Type 1 Capsid Protein Encoding Genes by siRNA: A Promising Antiviral Therapeutic Approach. PLoS ONE, 2014, 9, e96623.	1.1	21
84	Demonstration of an add-on effect of probucol and cilostazol on the statin-induced anti-atherogenic effects. Histology and Histopathology, 2014, 29, 1593-600.	0.5	3
85	Probucol and cilostazol exert a combinatorial anti-atherogenic effect in cholesterol-fed rabbits. Thrombosis Research, 2013, 132, 565-571.	0.8	15
86	Human Apolipoprotein A-II Protects Against Diet-Induced Atherosclerosis in Transgenic Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 224-231.	1.1	57
87	Probucol inhibits the initiation of atherosclerosis in cholesterol-fed rabbits. Lipids in Health and Disease, 2013, 12, 166.	1.2	25
88	Expression Systems and Species Used for Transgenic Animal Bioreactors. BioMed Research International, 2013, 2013, 1-9.	0.9	55
89	Comparative Analyses of Lipoprotein Lipase, Hepatic Lipase, and Endothelial Lipase, and Their Binding Properties with Known Inhibitors. PLoS ONE, 2013, 8, e72146.	1.1	19
90	Endothelial Lipase Mediates HDL Levels in Normal and Hyperlipidemic Rabbits. Journal of Atherosclerosis and Thrombosis, 2012, 19, 213-226.	0.9	15

#	Article	IF	CITATIONS
91	Expression of TRPV1 in rabbits and consuming hot pepper affects its body weight. Molecular Biology Reports, 2012, 39, 7583-7589.	1.0	31
92	C-reactive protein is associated with the progression of acute embolic stroke in rabbit model. Journal of Thrombosis and Thrombolysis, 2012, 33, 301-307.	1.0	10
93	Effect of the primary cooling rate on the motility and fertility of frozen-thawed rabbit spermatozoa. World Rabbit Science, 2012, 20, .	0.1	6
94	Hypertriglyceridemia and delayed clearance of fat load in transgenic rabbits expressing human apolipoprotein CIII. Transgenic Research, 2011, 20, 867-875.	1.3	30
95	Response to Letter Regarding Article, "Human C-Reactive Protein Does Not Promote Atherosclerosis in Transgenic Rabbits― Circulation, 2010, 122, .	1.6	0
96	High-fat diet without excess calories induces metabolic disorders and enhances atherosclerosis in rabbits. Atherosclerosis, 2010, 213, 148-155.	0.4	62
97	Human C-Reactive Protein Does Not Promote Atherosclerosis in Transgenic Rabbits. Circulation, 2009, 120, 2088-2094.	1.6	98
98	Expression of Human ApoAll in Transgenic Rabbits Leads to Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 2047-2053.	1.1	44
99	Matrix Metalloproteinase 12 Accelerates the Initiation of Atherosclerosis and Stimulates the Progression of Fatty Streaks to Fibrous Plaques in Transgenic Rabbits. American Journal of Pathology, 2008, 172, 1419-1429.	1.9	92
100	Unstable coronary plaques and cardiac events in myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits: questions and quandaries. Current Opinion in Lipidology, 2008, 19, 631-636.	1.2	38
101	Temporal and quantitative analysis of expression of metalloproteinases (MMPs) and their endogenous inhibitors in atherosclerotic lesions. Histology and Histopathology, 2008, 23, 1503-16.	0.5	23
102	Increased Expression of Vascular Endothelial Growth Factor in Kidney Leads to Progressive Impairment of Glomerular Functions. Journal of the American Society of Nephrology: JASN, 2007, 18, 2094-2104.	3.0	99
103	Lp(a) enhances coronary atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits. Atherosclerosis, 2007, 193, 269-276.	0.4	13
104	Macrophage Metalloelastase Accelerates the Progression of Atherosclerosis in Transgenic Rabbits. Circulation, 2006, 113, 1993-2001.	1.6	129
105	Macrophage elastase (MMPâ€12) accelerates the progression of atherosclerosis in transgenic rabbits. FASEB Journal, 2006, 20, A12.	0.2	2
106	Transgenic rabbits with increased VEGF expression develop hemangiomas in the liver: a new model for Kasabach–Merritt syndrome. Laboratory Investigation, 2005, 85, 1517-1527.	1.7	30
107	Enhanced aortic atherosclerosis in transgenic Watanabe heritable hyperlipidemic rabbits expressing lipoprotein lipase. Cardiovascular Research, 2005, 65, 524-534.	1.8	30
108	Macrophage-derived lipoprotein lipase increases aortic atherosclerosis in cholesterol-fed Tg rabbits. Atherosclerosis, 2005, 179, 87-95.	0.4	53

#	Article	IF	CITATIONS
109	High lipoprotein lipase activity increases insulin sensitivity in transgenic rabbits. Metabolism: Clinical and Experimental, 2005, 54, 132-138.	1.5	33
110	Overexpression of Lipoprotein Lipase in Transgenic Watanabe Heritable Hyperlipidemic Rabbits Improves Hyperlipidemia and Obesity. Journal of Biological Chemistry, 2004, 279, 7521-7529.	1.6	58
111	Overexpression of lipoprotein lipase in transgenic rabbits leads to increased small dense LDL in plasma and promotes atherosclerosis. Laboratory Investigation, 2004, 84, 715-726.	1.7	31
112	Macrophage-Specific Overexpression of Human Matrix Metalloproteinase-12 in Transgenic Rabbits. Transgenic Research, 2004, 13, 261-269.	1.3	23
113	Transgenic rabbits as therapeutic protein bioreactors and human disease models. , 2003, 99, 261-282.		145
114	Development of an Animal Model for Spontaneous Myocardial Infarction (WHHLMI Rabbit). Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1239-1244.	1.1	160
115	Inflammatory Reactions in the Pathogenesis of Atherosclerosis. Journal of Atherosclerosis and Thrombosis, 2003, 10, 63-71.	0.9	288
116	Lipoprotein(a) Enhances Advanced Atherosclerosis and Vascular Calcification in WHHL Transgenic Rabbits Expressing Human Apolipoprotein(a). Journal of Biological Chemistry, 2002, 277, 47486-47492.	1.6	67
117	Lipoprotein(a) Promotes Smooth Muscle Cell Proliferation and Dedifferentiation in Atherosclerotic Lesions of Human Apo(a) Transgenic Rabbits. American Journal of Pathology, 2002, 160, 227-236.	1.9	70
118	Transgenic Rabbits Expressing Human Apolipoprotein(a) Develop More Extensive Atherosclerotic Lesions in Response to a Cholesterol-Rich Diet. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 88-94.	1.1	77
119	Overexpression of Lipoprotein Lipase in Transgenic Rabbits Inhibits Diet-induced Hypercholesterolemia and Atherosclerosis. Journal of Biological Chemistry, 2001, 276, 40071-40079.	1.6	85
120	Enhanced Atherosclerosis in Lp(a) WHHL Transgenic Rabbits. Annals of the New York Academy of Sciences, 2001, 947, 362-365.	1.8	18
121	29.Production of Transgenic Rabbits by Somatic Nuclear Transfer. Proceedings of the Japanese Society of Animal Models for Human Diseases, 2000, 16, 36-36.	0.1	0
122	Transgenic rabbits expressing human lipoprotein lipase. Cytotechnology, 2000, 33, 93-99.	0.7	8
123	Role of Endothelinâ€1 in Atherosclerosis ^a . Annals of the New York Academy of Sciences, 2000, 902, 84-94.	1.8	48
124	Transgenic Rabbits Expressing Human Apolipoprotein(a) as a Useful Model for the Study of Lipoprotein(a) ^a . Annals of the New York Academy of Sciences, 2000, 902, 347-351.	1.8	5
125	Extracranial metastasis of anaplastic ganglioglioma through a ventriculoperitoneal shunt: A case report. Pathology International, 1999, 49, 258-263.	0.6	31
126	Transgenic rabbit models for biomedical research: Current status, basic methods and future perspectives. Pathology International, 1999, 49, 583-594.	0.6	53

#	Article	IF	CITATIONS
127	Assembly of Lipoprotein (a) in Transgenic Rabbits Expressing Human Apolipoprotein (a). Biochemical and Biophysical Research Communications, 1999, 255, 639-644.	1.0	35
128	Immunohistochemical Localization of Lipoprotein Lipase and Apolipoprotein E in Human Atherosclerotic Lesions Acta Histochemica Et Cytochemica, 1998, 31, 485-492.	0.8	8
129	Overexpression of Human Apolipoprotein B-100 in Transgenic Rabbits Results in Increased Levels of LDL and Decreased Levels of HDL. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 1889-1899.	1.1	61