
Bo Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3227165/publications.pdf Version: 2024-02-01

RO ZUANO

#	Article	IF	CITATIONS
1	Bench-Top Method for Fabricating Glass-Sealed Nanodisk Electrodes, Glass Nanopore Electrodes, and Glass Nanopore Membranes of Controlled Size. Analytical Chemistry, 2007, 79, 4778-4787.	6.5	250
2	Electrochemical Responses and Electrocatalysis at Single Au Nanoparticles. Journal of the American Chemical Society, 2010, 132, 3047-3054.	13.7	218
3	The Nanopore Electrode. Analytical Chemistry, 2004, 76, 6229-6238.	6.5	213
4	Nanoparticle Transport in Conical-Shaped Nanopores. Analytical Chemistry, 2011, 83, 3840-3847.	6.5	209
5	Observation of Multipeak Collision Behavior during the Electro-Oxidation of Single Ag Nanoparticles. Journal of the American Chemical Society, 2017, 139, 708-718.	13.7	181
6	Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes—theory and experiments. Physical Chemistry Chemical Physics, 2011, 13, 5394.	2.8	160
7	Nanoscale Electrochemistry. Analytical Chemistry, 2013, 85, 473-486.	6.5	146
8	Fluorescence Coupling for Direct Imaging of Electrocatalytic Heterogeneity. Journal of the American Chemical Society, 2013, 135, 855-861.	13.7	142
9	Nanoelectrodes: Recent Advances and New Directions. Annual Review of Analytical Chemistry, 2012, 5, 253-272.	5.4	136
10	Preparation and Electrochemical Response of 1â^'3 nm Pt Disk Electrodes. Analytical Chemistry, 2009, 81, 5496-5502.	6.5	134
11	Nanoscale Electrochemistry Revisited. Analytical Chemistry, 2016, 88, 414-430.	6.5	126
12	Spatially and Temporally Resolved Single-Cell Exocytosis Utilizing Individually Addressable Carbon Microelectrode Arrays. Analytical Chemistry, 2008, 80, 1394-1400.	6.5	125
13	Coupled Electrochemical Reactions at Bipolar Microelectrodes and Nanoelectrodes. Analytical Chemistry, 2012, 84, 1609-1616.	6.5	121
14	Single-Nanoparticle Electrochemistry through Immobilization and Collision. Accounts of Chemical Research, 2016, 49, 2625-2631.	15.6	117
15	Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5878-5883.	7.1	108
16	Steady-State Voltammetric Response of the Nanopore Electrode. Analytical Chemistry, 2006, 78, 477-483.	6.5	98
17	Collision Dynamics during the Electrooxidation of Individual Silver Nanoparticles. Journal of the American Chemical Society, 2017, 139, 16923-16931.	13.7	95
18	Chemically Resolved Transient Collision Events of Single Electrocatalytic Nanoparticles. Journal of the American Chemical Society, 2014, 136, 8879-8882.	13.7	91

BO ZHANG

#	Article	IF	CITATIONS
19	Single Particle Detection by Area Amplification: Single Wall Carbon Nanotube Attachment to a Nanoelectrode. Journal of the American Chemical Society, 2013, 135, 5258-5261.	13.7	90
20	Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface. Journal of the American Chemical Society, 2017, 139, 12274-12282.	13.7	89
21	A Silica Nanochannel and Its Applications in Sensing and Molecular Transport. Analytical Chemistry, 2009, 81, 5541-5548.	6.5	77
22	Steady-State Voltammetry of a Microelectrode in a Closed Bipolar Cell. Analytical Chemistry, 2012, 84, 8797-8804.	6.5	75
23	Scan-Rate-Dependent Current Rectification of Cone-Shaped Silica Nanopores in Quartz Nanopipettes. Journal of the American Chemical Society, 2010, 132, 17088-17091.	13.7	72
24	Fluorescence-Enabled Electrochemical Microscopy with Dihydroresorufin as a Fluorogenic Indicator. Analytical Chemistry, 2014, 86, 6040-6048.	6.5	65
25	Temporal Resolution in Electrochemical Imaging on Single PC12 Cells Using Amperometry and Voltammetry at Microelectrode Arrays. Analytical Chemistry, 2011, 83, 571-577.	6.5	64
26	Au Disk Nanoelectrode by Electrochemical Deposition in a Nanopore. Analytical Chemistry, 2010, 82, 6737-6743.	6.5	58
27	Electrodeposited Gold on Carbon-Fiber Microelectrodes for Enhancing Amperometric Detection of Dopamine Release from Pheochromocytoma Cells. Analytical Chemistry, 2018, 90, 10049-10055.	6.5	51
28	Electrochemiluminescence (ECL)-Based Electrochemical Imaging Using a Massive Array of Bipolar Ultramicroelectrodes. Analytical Chemistry, 2020, 92, 6748-6755.	6.5	51
29	Highly Sensitive Detection of Exocytotic Dopamine Release Using a Gold-Nanoparticle-Network Microelectrode. Analytical Chemistry, 2011, 83, 920-927.	6.5	50
30	Single-Molecule Electrochemistry on a Porous Silica-Coated Electrode. Journal of the American Chemical Society, 2017, 139, 2964-2971.	13.7	50
31	Imaging Transient Formation of Diffusion Layers with Fluorescence-Enabled Electrochemical Microscopy. Analytical Chemistry, 2014, 86, 12299-12307.	6.5	49
32	Recent advances in the development and application of nanoelectrodes. Analyst, The, 2016, 141, 5474-5487.	3.5	45
33	Fast-Scan Cyclic Voltammetry Allows Determination of Electron-Transfer Kinetic Constants in Single Nanoparticle Collision. Journal of Physical Chemistry C, 2016, 120, 20536-20546.	3.1	40
34	Single-Molecule Fluorescence Microscopy for Probing the Electrochemical Interface. ACS Omega, 2020, 5, 89-97.	3.5	37
35	Imaging Single Nanobubbles of H ₂ and O ₂ During the Overall Water Electrolysis with Single-Molecule Fluorescence Microscopy. Analytical Chemistry, 2020, 92, 3682-3688.	6.5	36
36	Electrogenerated Chemiluminescence Reporting on Closed Bipolar Microelectrodes and the Influence of Electrode Size. ChemElectroChem, 2016, 3, 457-464.	3.4	31

Bo Zhang

#	Article	IF	CITATIONS
37	Temporally-Resolved Ultrafast Hydrogen Adsorption and Evolution on Single Platinum Nanoparticles. Analytical Chemistry, 2019, 91, 4023-4030.	6.5	30
38	Nanopipette-Based Electroplated Nanoelectrodes. Analytical Chemistry, 2016, 88, 614-620.	6.5	29
39	Collision and Oxidation of Silver Nanoparticles on a Gold Nanoband Electrode. Journal of Physical Chemistry C, 2017, 121, 23564-23573.	3.1	29
40	Single-molecule electrochemistry: From redox cycling to single redox events. Current Opinion in Electrochemistry, 2018, 7, 81-86.	4.8	29
41	Counting Single Redox Molecules in a Nanoscale Electrochemical Cell. Analytical Chemistry, 2018, 90, 13837-13841.	6.5	29
42	Collision, Adhesion, and Oxidation of Single Ag Nanoparticles on a Polysulfide-Modified Microelectrode. Journal of the American Chemical Society, 2021, 143, 16154-16162.	13.7	28
43	Stochastic collision electrochemistry of single silver nanoparticles. Current Opinion in Electrochemistry, 2020, 22, 129-135.	4.8	27
44	Aptamer Sandwich Lateral Flow Assay (AptaFlow) for Antibody-Free SARS-CoV-2 Detection. Analytical Chemistry, 2022, 94, 7278-7285.	6.5	25
45	Bipolar Electrochemistry on a Nanopore-Supported Platinum Nanoparticle Electrode. Analytical Chemistry, 2017, 89, 12652-12658.	6.5	24
46	Fast Detection of Single Liposomes Using a Combined Nanopore Microelectrode Sensor. Analytical Chemistry, 2020, 92, 11318-11324.	6.5	23
47	Voltammetric Behavior of Gold Nanotrench Electrodes. Langmuir, 2011, 27, 12218-12225.	3.5	21
48	Detection of Transient Nanoparticle Collision Events Using Electrochemiluminescence on a Closed Bipolar Microelectrode. ChemElectroChem, 2020, 7, 252-259.	3.4	21
49	Observing Transient Bipolar Electrochemical Coupling on Single Nanoparticles Translocating through a Nanopore. Langmuir, 2019, 35, 7180-7190.	3.5	20
50	Optical imaging of nanoscale electrochemical interfaces in energy applications. Nano Energy, 2021, 90, 106539.	16.0	19
51	Observing Electrochemical Dealloying by Single-Nanoparticle Collision. Analytical Chemistry, 2016, 88, 8728-8734.	6.5	18
52	Engineering Single Nanopores on Gold Nanoplates by Tuning Crystal Screw Dislocation. Advanced Materials, 2017, 29, 1703102.	21.0	17
53	Transient Electrocatalytic Water Oxidation in Single-Nanoparticle Collision. Journal of Physical Chemistry C, 2018, 122, 6447-6455.	3.1	17
54	Effect of Surfactant on Electrochemically Generated Surface Nanobubbles. Analytical Chemistry, 2021, 93, 5170-5176.	6.5	17

Bo Zhang

#	Article	IF	CITATIONS
55	Electrochemical Detection of Nanoparticle Collision by Reduction of Silver Chloride. Journal of the Electrochemical Society, 2016, 163, H3145-H3151.	2.9	15
56	Visualizing and Calculating Tip–Substrate Distance in Nanoscale Scanning Electrochemical Microscopy Using 3-Dimensional Super-Resolution Optical Imaging. Analytical Chemistry, 2017, 89, 922-928.	6.5	15
57	Study of the Formation and Quick Growth of Thick Oxide Films Using Platinum Nanoelectrodes as a Model Electrocatalyst. Langmuir, 2014, 30, 11235-11242.	3.5	14
58	Electrocatalyst Screening on a Massive Array of Closed Bipolar Microelectrodes. Journal of the Electrochemical Society, 2021, 168, 106502.	2.9	11
59	Membrane Tension Modifies Redox Loading and Release in Single Liposome Electroanalysis. Analytical Chemistry, 2021, 93, 3876-3882.	6.5	10
60	Stochastic Charge Fluctuations in Bipolar Electrodes. Journal of Physical Chemistry C, 2016, 120, 22777-22783.	3.1	9
61	Electrostatic Ion Enrichment in an Ultrathin-Layer Cell with a Critical Dimension between 5 and 20 nm. Analytical Chemistry, 2017, 89, 2739-2746.	6.5	9
62	Nanobubble Labeling and Imaging with a Solvatochromic Fluorophore Nile Red. Analytical Chemistry, 2021, 93, 15315-15322.	6.5	7
63	Electrochemical Characterization of Ultrathin Cross-Linked Metal Nanoparticle Films. Langmuir, 2016, 32, 8783-8792.	3.5	6
64	Microfabricated, massive electrochemical arrays of uniform ultramicroelectrodes. Journal of Electroanalytical Chemistry, 2016, 781, 174-180.	3.8	6
65	Collision and Coalescence of Single Attoliter Oil Droplets on a Pipet Nanopore. Langmuir, 2018, 34, 2699-2707.	3.5	5
66	FIB-milled quartz nanopores in a sealed nanopipette. Journal of Electroanalytical Chemistry, 2019, 833, 181-188.	3.8	5
67	Single-Molecule Interactions at a Surfactant-Modified H ₂ Surface Nanobubble. Langmuir, 2021, 37, 13816-13823.	3.5	4
68	Single-molecule electrochemistry. Frontiers of Nanoscience, 2021, , 253-293.	0.6	1
69	Single-molecule imaging for probing the electrochemical interface. Current Opinion in Electrochemistry, 2022, 35, 101047.	4.8	Ο