Lei Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3226450/publications.pdf

Version: 2024-02-01

191	16,257 citations	69	123
papers		h-index	g-index
196	196	196	16251 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Synthesis of Multiresponsive and Dynamic Chitosan-Based Hydrogels for Controlled Release of Bioactive Molecules. Biomacromolecules, 2011, 12, 2894-2901.	5.4	578
2	Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale, 2016, 8, 16819-16840.	5.6	509
3	Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale, 2015, 7, 11486-11508.	5.6	485
4	Redox-responsive polymers for drug delivery: from molecular design to applications. Polymer Chemistry, 2014, 5, 1519-1528.	3.9	483
5	Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale, 2012, 4, 5581.	5.6	476
6	An Injectable, Selfâ€Healing Hydrogel to Repair the Central Nervous System. Advanced Materials, 2015, 27, 3518-3524.	21.0	471
7	A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicology Research, 2012, 1, 62-68.	2.1	427
8	Design and Synthesis of N-Maleimido-Functionalized Hydrophilic Polymers via Copper-Mediated Living Radical Polymerization: Â A Suitable Alternative to PEGylation Chemistry. Journal of the American Chemical Society, 2005, 127, 2966-2973.	13.7	385
9	Highly Efficient Selfâ∈Healable and Dual Responsive Celluloseâ∈Based Hydrogels for Controlled Release and 3D Cell Culture. Advanced Functional Materials, 2017, 27, 1703174.	14.9	325
10	Mussel-Inspired Chemistry and Michael Addition Reaction for Efficient Oil/Water Separation. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4438-4442.	8.0	310
11	Aggregation induced emission-based fluorescent nanoparticles: fabrication methodologies and biomedical applications. Journal of Materials Chemistry B, 2014, 2, 4398.	5.8	309
12	A magnetic self-healing hydrogel. Chemical Communications, 2012, 48, 9305.	4.1	283
13	Site-Directed Conjugation of "Clicked―Glycopolymers To Form Glycoprotein Mimics:  Binding to Mammalian Lectin and Induction of Immunological Function. Journal of the American Chemical Society, 2007, 129, 15156-15163.	13.7	281
14	Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier. Polymer Chemistry, 2012, 3, 3235.	3.9	266
15	Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Physical Chemistry Chemical Physics, 2013, 15, 9907.	2.8	266
16	Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy. Chemical Science, 2014, 5, 3486-3492.	7.4	258
17	Thermo and pH Dual-Responsive Materials for Controllable Oil/Water Separation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2026-2030.	8.0	257
18	Surfactant modification of aggregation-induced emission material as biocompatible nanoparticles: Facile preparation and cell imaging. Nanoscale, 2013, 5, 147-150.	5.6	230

#	Article	IF	Citations
19	α-Aldehyde Terminally Functional Methacrylic Polymers from Living Radical Polymerization: Application in Protein Conjugation "Pegylation― Journal of the American Chemical Society, 2004, 126, 13220-13221.	13.7	222
20	Thermosensitive graphene nanocomposites formed using pyreneâ€ŧerminal polymers made by RAFT polymerization. Journal of Polymer Science Part A, 2010, 48, 425-433.	2.3	215
21	Synthesis, Characterization, and Multilayer Assembly of pH Sensitive Grapheneâ ⁻ Polymer Nanocomposites. Langmuir, 2010, 26, 10068-10075.	3.5	204
22	Bio-Inspired Anti-Oil-Fouling Chitosan-Coated Mesh for Oil/Water Separation Suitable for Broad pH Range and Hyper-Saline Environments. ACS Applied Materials & Diterfaces, 2013, 5, 11971-11976.	8.0	200
23	Facile Incorporation of Aggregation-Induced Emission Materials into Mesoporous Silica Nanoparticles for Intracellular Imaging and Cancer Therapy. ACS Applied Materials & Diterfaces, 2013, 5, 1943-1947.	8.0	196
24	One-pot tandem living radical polymerisation–Huisgens cycloaddition process ("clickâ€) catalysed by N-alkyl-2-pyridylmethanimine/Cu(i)Br complexes. Chemical Communications, 2005, , 2089-2091.	4.1	191
25	Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications. Toxicology Research, 2013, 2, 335.	2.1	175
26	Carbon-dots derived from nanodiamond: Photoluminescence tunable nanoparticles for cell imaging. Journal of Colloid and Interface Science, 2013, 397, 39-44.	9.4	171
27	Cellular responses of aniline oligomers: a preliminary study. Toxicology Research, 2012, 1, 201.	2.1	166
28	Waterâ€soluble, thermoresponsive, hyperbranched copolymers based on PEGâ€methacrylates: Synthesis, characterization, and LCST behavior. Journal of Polymer Science Part A, 2010, 48, 2783-2792.	2.3	156
29	Combining Thioâ^'Bromo "Click―Chemistry and RAFT Polymerization: A Powerful Tool for Preparing Functionalized Multiblock and Hyperbranched Polymers. Macromolecules, 2010, 43, 20-24.	4.8	153
30	Fluoridated HAp:Ln3+ (Ln = Eu or Tb) nanoparticles for cell-imaging. Nanoscale, 2012, 4, 6967.	5 . 6	149
31	PEGylation and polyPEGylation of nanodiamond. Polymer, 2012, 53, 3178-3184.	3.8	141
32	A new approach to bioconjugates for proteins and peptides ("pegylationâ€) utilising living radical polymerisation. Chemical Communications, 2004, , 2026-2027.	4.1	138
33	Graphene-Montmorillonite Composite Sponge for Safe and Effective Hemostasis. ACS Applied Materials & Samp; Interfaces, 2016, 8, 35071-35080.	8.0	137
34	Cytotoxicity study of polyethylene glycol derivatives. RSC Advances, 2017, 7, 18252-18259.	3 . 6	132
35	Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil–water separation. RSC Advances, 2013, 3, 23432.	3 . 6	130
36	Self-Healing Hydrogel with a Double Dynamic Network Comprising Imine and Borate Ester Linkages. Chemistry of Materials, 2019, 31, 5576-5583.	6.7	126

#	Article	IF	Citations
37	Multicomponent Combinatorial Polymerization via the Biginelli Reaction. Journal of the American Chemical Society, 2016, 138, 8690-8693.	13.7	125
38	Diaminopropionic Acid Reinforced Graphene Sponge and Its Use for Hemostasis. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 7666-7673.	8.0	121
39	A new insight into the Biginelli reaction: the dawn of multicomponent click chemistry?. Polymer Chemistry, 2013, 4, 5395.	3.9	119
40	Synthesis of Heterotelechelic Polymers for Conjugation of Two Different Proteins. Macromolecules, 2009, 42, 2360-2367.	4.8	118
41	The Ugi reaction in polymer chemistry: syntheses, applications and perspectives. Polymer Chemistry, 2015, 6, 8233-8239.	3.9	118
42	Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Materials Chemistry Frontiers, 2017, 1, 807-822.	5.9	118
43	Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharmaceutica Sinica B, 2020, 10, 61-78.	12.0	115
44	A novel biodegradable self-healing hydrogel to induce blood capillary formation. NPG Asia Materials, 2017, 9, e363-e363.	7.9	114
45	Differences in cytotoxicity of poly(PEGA)s synthesized by reversible addition–fragmentation chain transfer polymerization. Chemical Communications, 2009, , 3580.	4.1	113
46	Injectable and Self-Healing Chitosan Hydrogel Based on Imine Bonds: Design and Therapeutic Applications. International Journal of Molecular Sciences, 2018, 19, 2198.	4.1	110
47	PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. Polymer Chemistry, 2012, 3, 2716.	3.9	105
48	Synthesis of Semitelechelic Maleimide Poly(PEGA) for Protein Conjugation By RAFT Polymerization. Biomacromolecules, 2009, 10, 1777-1781.	5.4	102
49	Branched Polymerâ 'Protein Conjugates Made From Mid-Chain-Functional P(HPMA). Biomacromolecules, 2009, 10, 2847-2851.	5.4	101
50	Improving Chronic Diabetic Wound Healing through an Injectable and Self-Healing Hydrogel with Platelet-Rich Plasma Release. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55659-55674.	8.0	99
51	Self-Adapting Hydrogel to Improve the Therapeutic Effect in Wound-Healing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26046-26055.	8.0	98
52	Synthesis of azide/alkyne-terminal polymers and application for surface functionalisation through a [2 + 3] Huisgen cycloaddition process, "click chemistry― Soft Matter, 2007, 3, 732-739.	2.7	96
53	PEGylation of fluoridated hydroxyapatite (FAp):Ln3+ nanorods for cell imaging. Polymer Chemistry, 2013, 4, 4120.	3.9	95
54	A Modular Click Approach to Glycosylated Polymeric Beads:  Design, Synthesis and Preliminary Lectin Recognition Studies. Macromolecules, 2007, 40, 7513-7520.	4.8	93

#	Article	IF	CITATIONS
55	Introducing the Ugi reaction into polymer chemistry as a green click reaction to prepare middle-functional block copolymers. Polymer Chemistry, 2014, 5, 2704-2708.	3.9	93
56	Synthesis of an injectable, self-healable and dual responsive hydrogel for drug delivery and 3D cell cultivation. Polymer Chemistry, 2017, 8, 537-544.	3.9	93
57	The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian Journal of Pharmaceutical Sciences, 2020, 15, 131-144.	9.1	92
58	Amphiphilic fluorescent copolymers via one-pot combination of chemoenzymatic transesterification and RAFT polymerization: synthesis, self-assembly and cell imaging. Polymer Chemistry, 2015, 6, 607-612.	3.9	91
59	Synthesis of Maleimide-End-Functionalized Star Polymers and Multimeric Proteinâ 'Polymer Conjugates. Macromolecules, 2009, 42, 8028-8033.	4.8	90
60	â€~One pot' synthesis of well-defined poly(aminophosphonate)s: time for the Kabachnik–Fields reaction on the stage of polymer chemistry. Polymer Chemistry, 2014, 5, 1857-1862.	3.9	90
61	Synthesis and bioactivity of poly(HPMA)–lysozyme conjugates: the use of novel thiazolidine-2-thione coupling chemistry. Organic and Biomolecular Chemistry, 2009, 7, 3481.	2.8	88
62			

#	Article	IF	Citations
73	Combining Enzymatic Monomer Transformation with Photoinduced Electron Transfer â^' Reversible Addition–Fragmentation Chain Transfer for the Synthesis of Complex Multiblock Copolymers. ACS Macro Letters, 2014, 3, 633-638.	4.8	66
74	A novel poly ($\hat{1}^3$ -glutamic acid)/silk-sericin hydrogel for wound dressing: Synthesis, characterization and biological evaluation. Materials Science and Engineering C, 2015, 48, 533-540.	7.3	63
75	Improving tumor chemotherapy effect using an injectable self-healing hydrogel as drug carrier. Polymer Chemistry, 2017, 8, 5071-5076.	3.9	61
76	High Throughput Preparation of UV-Protective Polymers from Essential Oil Extracts via the Biginelli Reaction. Journal of the American Chemical Society, 2018, 140, 6865-6872.	13.7	61
77	Heterotelechelic polymers for capture and release of protein–polymer conjugates. Polymer Chemistry, 2010, 1, 168.	3.9	59
78	Facile Access to Polymeric Vesicular Nanostructures: Remarkable ï‰-End group Effects in Cholesterol and Pyrene Functional (Co)Polymers. Macromolecules, 2011, 44, 299-312.	4.8	59
79	Antibacterial Adhesion of Poly(methyl methacrylate) Modified by Borneol Acrylate. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28522-28528.	8.0	59
80	Chitosan-based self-healing hydrogel for bioapplications. Chinese Chemical Letters, 2017, 28, 2053-2057.	9.0	59
81	From drug to adhesive: a new application of poly(dihydropyrimidin-2(1H)-one)s via the Biginelli polycondensation. Polymer Chemistry, 2015, 6, 4940-4945.	3.9	58
82	Synthesis, Characterization, and Bioactivity of Mid-Functional PolyHPMAâ^'Lysozyme Bioconjugates. Macromolecules, 2010, 43, 3721-3727.	4.8	56
83	Modification of multi-wall carbon nanotube surfaces with poly(amidoamine) dendrons: Synthesis and metal templating. Chemical Communications, 2006, , 4949.	4.1	54
84	Synthesis of well-defined catechol polymers for surface functionalization of magnetic nanoparticles. Polymer Chemistry, 2016, 7, 7002-7010.	3.9	54
85	Biocompatibility evaluation of aniline oligomers with different end-functional groups. Toxicology Research, 2013, 2, 427.	2.1	52
86	Modulus-regulated 3D-cell proliferation in an injectable self-healing hydrogel. Colloids and Surfaces B: Biointerfaces, 2017, 149, 168-173.	5.0	52
87	Polymerization-Induced Coassembly of Enzyme–Polymer Conjugates into Comicelles with Tunable and Enhanced Cascade Activity. Nano Letters, 2020, 20, 1383-1387.	9.1	52
88	Introducing mercaptoacetic acid locking imine reaction into polymer chemistry as a green click reaction. Polymer Chemistry, 2014, 5, 2695-2699.	3.9	51
89	Multicomponent Polymerization System Combining Hantzsch Reaction and Reversible Addition–Fragmentation Chain Transfer to Efficiently Synthesize Well-Defined Poly(1,4-dihydropyridine)s. ACS Macro Letters, 2015, 4, 128-132.	4.8	50
90	Cross-linked graphene membrane for high-performance organics separation of emulsions. Journal of Membrane Science, 2015, 495, 439-444.	8.2	49

#	Article	IF	Citations
91	RAFT controlled synthesis of six-armed biodegradable star polymeric architectures via a  core-first' methodology. Polymer, 2009, 50, 4455-4463.	3.8	48
92	From Polymer Sequence Control to Protein Recognition: Synthesis, Self-Assembly and Lectin Binding. Macromolecules, 2014, 47, 4676-4683.	4.8	48
93	The power of one-pot: a hexa-component system containing π–π stacking, Ugi reaction and RAFT polymerization for simple polymer conjugation on carbon nanotubes. Polymer Chemistry, 2015, 6, 509-513.	3.9	48
94	Fabrication of aggregation-induced emission based fluorescent nanoparticles and their biological imaging application: recent progress and perspectives. Materials Today, 2016, 19, 284-291.	14.2	48
95	Polymer synthesis by mimicking nature's strategy: the combination of ultra-fast RAFT and the Biginelli reaction. Polymer Chemistry, 2017, 8, 5679-5687.	3.9	48
96	Multicomponent Copolycondensates via the Simultaneous Hantzsch and Biginelli Reactions. ACS Macro Letters, 2015, 4, 1189-1193.	4.8	45
97	A simple methodology for the synthesis of heterotelechelic protein–polymer–biomolecule conjugates. Journal of Polymer Science Part A, 2010, 48, 1399-1405.	2.3	44
98	One-pot synthesis and biological imaging application of an amphiphilic fluorescent copolymer via a combination of RAFT polymerization and Schiff base reaction. Polymer Chemistry, 2015, 6, 2133-2138.	3.9	43
99	The Hantzsch reaction in polymer chemistry: synthesis and tentative application. Polymer Chemistry, 2017, 8, 7290-7296.	3.9	42
100	Synthesis of Functionalized and Biodegradable Hyperbranched Polymers from Novel AB ₂ Macromonomers Prepared by RAFT Polymerization. Macromolecules, 2009, 42, 6893-6901.	4.8	41
101	Block and star block copolymers by mechanism transformation. II. Synthesis of poly(DOP-b-St) by combination of ATRP and CROP. Journal of Polymer Science Part A, 2000, 38, 436-443.	2.3	40
102	Training the old dog new tricks: the applications of the Biginelli reaction in polymer chemistry. Science China Chemistry, 2016, 59, 1541-1547.	8.2	40
103	Postpolymerization Modification of Poly(dihydropyrimidin-2(1 <i>H</i>)-thione)s via the Thiourea–Haloalkane Reaction to Prepare Functional Polymers. ACS Macro Letters, 2015, 4, 843-847.	4.8	39
104	Direct surface PEGylation of nanodiamond via RAFT polymerization. Applied Surface Science, 2015, 357, 2147-2153.	6.1	39
105	One-Pot Cascade Synthetic Strategy: A Smart Combination of Chemoenzymatic Transesterification and Raft Polymerization. ACS Macro Letters, 2012, 1, 1224-1227.	4.8	38
106	A multicomponent polymerization system: click–chemoenzymatic–ATRP in one-pot for polymer synthesis. Polymer Chemistry, 2013, 4, 466-469.	3.9	38
107	Polydopamine reinforced hemostasis of a graphene oxide sponge via enhanced platelet stimulation. Colloids and Surfaces B: Biointerfaces, 2019, 174, 35-41.	5.0	38
108	Bio-reversible polyPEGylation. Chemical Communications, 2009, , 6560.	4.1	36

#	Article	IF	Citations
109	Adaptive Chitosan Hollow Microspheres as Efficient Drug Carrier. Biomacromolecules, 2017, 18, 2195-2204.	5.4	36
110	One-pot polymer conjugation on carbon nanotubes through simultaneous π–π stacking and the Biginelli reaction. Polymer, 2015, 64, 210-215.	3.8	35
111	Comb-like temperature-responsive polyhydroxyalkanoate-graft-poly(2-dimethylamino-ethylmethacrylate) for controllable protein adsorption. Polymer Chemistry, 2016, 7, 5957-5965.	3.9	35
112	An injectable ionic hydrogel inducing high temperature hyperthermia for microwave tumor ablation. Journal of Materials Chemistry B, 2017, 5, 4110-4120.	5.8	35
113	Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells. Science China Life Sciences, 2018, 61, 448-456.	4.9	35
114	High-throughput preparation of radioprotective polymers via Hantzsch's reaction for in vivo X-ray damage determination. Nature Communications, 2020, 11, 6214.	12.8	35
115	Combining chemoenzymatic monomer transformation with ATRP: a facile "one-pot―approach to functional polymers. Chemical Communications, 2012, 48, 9062.	4.1	34
116	Biomimic modification of graphene oxide. New Journal of Chemistry, 2015, 39, 8172-8178.	2.8	33
117	Synthesis of amphiphilic fluorescent polymers via a one-pot combination of multicomponent Hantzsch reaction and RAFT polymerization and their cell imaging applications. Polymer Chemistry, 2017, 8, 4805-4810.	3.9	33
118	Dynamic agent of an injectable and self-healing drug-loaded hydrogel for embolization therapy. Colloids and Surfaces B: Biointerfaces, 2018, 172, 601-607.	5.0	33
119	Borneol-grafted cellulose for antifungal adhesion and fungal growth inhibition. RSC Advances, 2015, 5, 51947-51952.	3.6	32
120	Facile Oneâ€Pot Synthesis of New Functional Polymers through Multicomponent Systems. Macromolecular Chemistry and Physics, 2014, 215, 486-492.	2.2	30
121	One-pot synthesis of optically active polymervia concurrent cooperation of enzymatic resolution and living radical polymerization. Polymer Chemistry, 2013, 4, 264-267.	3.9	28
122	Fluorescent PEGylation agent by a thiolactone-based one-pot reaction: a new strategy for theranostic combinations. Polymer Chemistry, 2014, 5, 6656-6661.	3.9	28
123	Polymers for Fluorescence Imaging of Formaldehyde in Living Systems via the Hantzsch Reaction. ACS Macro Letters, 2018, 7, 1346-1352.	4.8	27
124	Bioconjugation of biotinylated PAMAM dendrons to avidin. Chemical Communications, 2007, , 3441.	4.1	26
125	DNA Polyplexes Formed Using PEGylated Biodegradable Hyperbranched Polymers. Macromolecular Bioscience, 2010, 10, 632-637.	4.1	26
126	Nonionic polymer cross-linked chitosan hydrogel: preparation and bioevaluation. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1564-1574.	3.5	26

#	Article	IF	CITATIONS
127	An antioxidant self-healing hydrogel for 3D cell cultures. Journal of Materials Chemistry B, 2020, 8, 1383-1388.	5.8	25
128	A Facile Approach for Fabricating Dualâ€Function Membrane: Simultaneously Removing Oil from Water and Adsorbing Waterâ€Soluble Proteins. Advanced Materials Interfaces, 2016, 3, 1600291.	3.7	24
129	Antibacterial Self-Healing Hydrogel via the Ugi Reaction. ACS Applied Polymer Materials, 2020, 2, 404-410.	4.4	24
130	Microorganism inspired hydrogels: hierarchical super/macro-porous structure, rapid swelling rate and high adsorption. RSC Advances, 2014, 4, 32475-32481.	3.6	23
131	Curcumin–polymer conjugates with dynamic boronic acid ester linkages for selective killing of cancer cells. Polymer Chemistry, 2020, 11, 1321-1326.	3.9	23
132	A multi-responsive self-healing hydrogel for controlled release of curcumin. Polymer Chemistry, 2021, 12, 2457-2463.	3.9	23
133	Self-healing Hydrogels Based on Dynamic Chemistry and Their Biomedical Applications. Acta Chimica Sinica, 2013, 71, 485.	1.4	23
134	<i>De Novo</i> Design of Entropy-Driven Polymers Resistant to Bacterial Attachment via Multicomponent Reactions. Journal of the American Chemical Society, 2021, 143, 17250-17260.	13.7	23
135	Synthesis of amphiphilic fluorescent PEGylated AIE nanoparticles via RAFT polymerization and their cell imaging applications. RSC Advances, 2015, 5, 89472-89477.	3.6	22
136	Fluorescent Cell-Conjugation by a Multifunctional Polymer: A New Application of the Hantzsch Reaction. ACS Macro Letters, 2017, 6, 550-555.	4.8	22
137	Synthesis of Biotinylated Aldehyde Polymers for Biomolecule Conjugation. Macromolecular Rapid Communications, 2013, 34, 983-989.	3.9	21
138	Magnetic Self-Healing Hydrogel from Difunctional Polymers Prepared via the Kabachnik–Fields Reaction. ACS Macro Letters, 2022, 11, 39-45.	4.8	21
139	Directed carbon nanotube assembly using a pyrene-functionalized polymer. Chemical Communications, 2009, , 4818.	4.1	20
140	Size-dependent endocytosis and a dynamic-release model of nanoparticles. Nanoscale, 2018, 10, 8269-8274.	5.6	20
141	The Hantzsch Reaction in Polymer Chemistry: From Synthetic Methods to Applications. Macromolecular Rapid Communications, 2021, 42, 2000459.	3.9	20
142	Synthesis of gradient copolymers by concurrent enzymatic monomer transformation and RAFT polymerization. Polymer Chemistry, 2013, 4, 5720.	3.9	19
143	Ferrocene-Containing Polymer via the Biginelli Reaction for In Vivo Treatment of Oxidative Stress Damage. ACS Macro Letters, 2019, 8, 639-645.	4.8	19
144	Robust Multiscale-Oriented Thermoresponsive Fibrous Hydrogels with Rapid Self-Recovery and Ultrafast Response Underwater. ACS Applied Materials & Interfaces, 2020, 12, 33152-33162.	8.0	19

#	Article	lF	CITATIONS
145	Fluorescent protein-reactive polymers via one-pot combination of the Ugi reaction and RAFT polymerization. Polymer Chemistry, 2016, 7, 4867-4872.	3.9	18
146	Facile synthesis of a multifunctional copolymer via a concurrent RAFT-enzymatic system for theranostic applications. Polymer Chemistry, 2016, 7, 546-552.	3.9	18
147	Multicomponent Reactions for Surface Modification. Macromolecular Rapid Communications, 2018, 39, e1800064.	3.9	17
148	Nonmagnetic Hypertonic Saline-Based Implant for Breast Cancer Postsurgical Recurrence Prevention by Magnetic Field/pH-Driven Thermochemotherapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10597-10607.	8.0	17
149	High-Throughput Preparation of Antibacterial Polymers from Natural Product Derivatives via the Hantzsch Reaction. IScience, 2020, 23, 100754.	4.1	17
150	Anticancer Polymers via the Biginelli Reaction. ACS Macro Letters, 2020, 9, 1249-1254.	4.8	17
151	Antifungal Paper Based on a Polyborneolacrylate Coating. Polymers, 2018, 10, 448.	4.5	15
152	Fabrication of amphiphilic fluorescent polylysine nanoparticles by atom transfer radical polymerization (ATRP) and their application in cell imaging. RSC Advances, 2015, 5, 65884-65889.	3.6	14
153	Post-polymerization modification via the Biginelli reaction to prepare water-soluble polymer adhesives. Polymer Chemistry, 2017, 8, 5490-5495.	3.9	14
154	A polymerizable aggregation-induced emission dye for fluorescent nanoparticles: synthesis, molecular structure and application in cell imaging. Polymer Chemistry, 2019, 10, 2162-2169.	3.9	14
155	Stimuliâ€Responsive Multifunctional Phenylboronic Acid Polymers Via Multicomponent Reactions: From Synthesis to Application. Macromolecular Rapid Communications, 2021, 42, e2100022.	3.9	14
156	Protein Release from Biodegradable PolyHPMA–Lysozyme Conjugates Resulting in Bioactivity Enhancement. Chemistry - an Asian Journal, 2011, 6, 1398-1404.	3.3	13
157	One-pot polymer modification of carbon nanotubes through mercaptoacetic acid locking imine reaction and π–π stacking. RSC Advances, 2015, 5, 54133-54137.	3.6	13
158	Lighting up the PEGylation agents via the Hantzsch reaction. Polymer Chemistry, 2016, 7, 523-528.	3.9	13
159	An acrylate AIE-active dye with a two-photon fluorescent switch for fluorescent nanoparticles by RAFT polymerization: synthesis, molecular structure and application in cell imaging. RSC Advances, 2020, 10, 5704-5711.	3.6	13
160	Biginelli Multicomponent Reactions in Polymer Science. Advances in Polymer Science, 2014, , 43-59.	0.8	12
161	A polymerizable Aggregation Induced Emission (AIE)-active dye with remarkable pH fluorescence switching based on benzothiazole and its application in biological imaging. Dyes and Pigments, 2021, 196, 109793.	3.7	12
162	Spatiotemporally dynamic therapy with shape-adaptive drug-gel for the improvement of tissue regeneration with ordered structure. Bioactive Materials, 2022, 8, 165-176.	15.6	12

#	Article	IF	CITATIONS
163	Iron Transporters and Ferroptosis in Malignant Brain Tumors. Frontiers in Oncology, 2022, 12, 861834.	2.8	12
164	Amphiphilic fluorescent copolymers via one-pot synthesis of RAFT polymerization and multicomponent Biginelli reaction and their cells imaging applications. Journal of Materials Research, 2019, 34, 3011-3019.	2.6	11
165	A Facile Preparation of Musselâ€Inspired Poly(dopamine phosphonateâ€∢i>co∢/i>â€PEGMA)s via a Oneâ€Pot Multicomponent Polymerization System. Macromolecular Rapid Communications, 2020, 41, e1900533.	3.9	11
166	Hierarchically Porous Chitosan–PEG–Silica Biohybrid: Synthesis and Rapid Cell Adsorption. Advanced Healthcare Materials, 2013, 2, 302-305.	7.6	10
167	Polyanionic self-healing hydrogels for the controlled release of cisplatin. European Polymer Journal, 2020, 133, 109773.	5.4	10
168	Synthesis of amphiphilic fluorescent copolymers with smart pH sensitivity via RAFT polymerization and their application in cell imaging. Polymer Bulletin, 2017, 74, 4525-4536.	3.3	9
169	Antioxidant Polymers via the Kabachnikâ€Fields Reaction to Control Cellular Oxidative Stress. Macromolecular Bioscience, 2020, 20, e1900419.	4.1	9
170	Poly(amino acid)s-based star AlEgens for cell uptake with pH-response and chiral difference. Colloids and Surfaces B: Biointerfaces, 2021, 202, 111687.	5.0	9
171	Antioxidant Polymers via the Ugi Reaction for In Vivo Protection of UV-Induced Oxidative Stress. Chemistry of Materials, 2022, 34, 2645-2654.	6.7	9
172	Liquid Crystalline Network Composites Reinforced by Silica Nanoparticles. Materials, 2014, 7, 5356-5365.	2.9	8
173	Optically Active Polymer Via Oneâ€Pot Combination of Chemoenzymatic Transesterification and RAFT Polymerization: Synthesis and Its Application in Hybrid Silica Particles. Macromolecular Chemistry and Physics, 2015, 216, 1483-1489.	2.2	8
174	A novel AIE-active dye for fluorescent nanoparticles by one-pot combination of Hantzsch reaction and RAFT polymerization: synthesis, molecular structure and application in cell imaging. RSC Advances, 2019, 9, 32601-32607.	3.6	8
175	Microorganism inspired hydrogels: fermentation capacity, gelation process and pore-forming mechanism under temperature stimulus. RSC Advances, 2015, 5, 91937-91945.	3.6	7
176	Amphiphilic AIE-active copolymers with optical activity by chemoenzymatic transesterification and RAFT polymerization: Synthesis, self-assembly and biological imaging. Dyes and Pigments, 2021, 184, 108829.	3.7	7
177	Aspirin inhibits prostaglandins to prevents colon tumor formation via down-regulating Wnt production. European Journal of Pharmacology, 2021, 906, 174173.	3.5	7
178	Fluorescent polymers <i>via</i> post-polymerization modification of Biginelli-type polymers for cellular protection against UV damage. Polymer Chemistry, 2021, 12, 852-857.	3.9	7
179	PolyPEGylation of Protein using Semitelechelic and Mid-functional Poly(PEGMA)s synthesized by RAFT polymerization. Australian Journal of Chemistry, 2011, 64, 1602.	0.9	6
180	Antifungal Polymer Containing Menthoxy Triazine. ACS Applied Polymer Materials, 2021, 3, 3702-3707.	4.4	6

#	Article	IF	CITATIONS
181	Combating Biofilms by a Self-Adapting Drug Loading Hydrogel. ACS Applied Bio Materials, 2021, 4, 6219-6226.	4.6	6
182	Synthesis of Starch-Based Amphiphilic Fluorescent Nanoparticles and Their Application in Biological Imaging. Journal of Nanoscience and Nanotechnology, 2018, 18, 2345-2351.	0.9	5
183	Polymerizable AEE-active Dye with Optical Activity for Fluorescent Nanoparticles Based on Phenothiazine: Synthesis, Self-assembly and Biological Imaging. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1431-1440.	3.8	5
184	Ablation of Proton/Glucose Exporter SLC45A2 Enhances Melanosomal Glycolysis to Inhibit Melanin Biosynthesis and Promote Melanoma Metastasis. Journal of Investigative Dermatology, 2022, 142, 2744-2755.e9.	0.7	5
185	New synthetic strategy for facile synthesis of functional polymers by one-pot combination of controlled radical polymerization and enzymatic reaction. Polymer International, 2015, 64, 705-712.	3.1	4
186	Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture. Journal of Visualized Experiments, $2017, \ldots$	0.3	4
187	Multifunctional Polymer–Protein Conjugates Generated by Multicomponent Reactionsâ€. Chinese Journal of Chemistry, 2021, 39, 2287-2295.	4.9	4
188	An effective compatibilizer for tin fluorophosphate glass/polymer composites obtained from "one pot―KF-RAFT polymerization. Composites Science and Technology, 2018, 168, 336-345.	7.8	2
189	RAI3 knockdown enhances osteogenic differentiation of bone marrow mesenchymal stem cells via STAT3 signaling pathway. Biochemical and Biophysical Research Communications, 2020, 524, 516-522.	2.1	1
190	Atom Transfer Radical Polymerization of Styrene Using a Bifunctional Initiator. Chinese Journal of Chemistry, 2001, 19, 881-884.	4.9	0
191	ENCAPSULATION OF LIVING YEASTS IN MESOPOROUS XEROGEL <i>VIA</i> NON-SURFACTANT TEMPLATING SOL-GEL PROCESS. Acta Polymerica Sinica, 2013, 013, 643-648.	0.0	0