Ionel sandovici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/322643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The imprinted lgf2-lgf2r axis is critical for matching placental microvasculature expansion to fetal growth. Developmental Cell, 2022, 57, 63-79.e8.	7.0	52
2	Sex differences in the intergenerational inheritance of metabolic traits. Nature Metabolism, 2022, 4, 507-523.	11.9	25
3	Deletion of the Imprinted Phlda2 Gene Increases Placental Passive Permeability in the Mouse. Genes, 2021, 12, 639.	2.4	1
4	Autocrine IGF2 programmes β-cell plasticity under conditions of increased metabolic demand. Scientific Reports, 2021, 11, 7717.	3.3	8
5	Adipose Tissue Epigenetic Profile in Obesity-Related Dysglycemia -ÂA Systematic Review. Frontiers in Endocrinology, 2021, 12, 681649.	3.5	9
6	Placental secretome characterization identifies candidates for pregnancy complications. Communications Biology, 2021, 4, 701.	4.4	18
7	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. PLoS Genetics, 2020, 16, e1009069.	3.5	15
8	Analysis of Histone Modifications in Rodent Pancreatic Islets by Native Chromatin Immunoprecipitation. Methods in Molecular Biology, 2020, 2076, 199-213.	0.9	0
9	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. , 2020, 16, e1009069.		0
10	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. , 2020, 16, e1009069.		0
11	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. , 2020, 16, e1009069.		0
12	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. , 2020, 16, e1009069.		0
13	Disruption of imprinting at the Igf2-H19 locus in the placental endocrine zone affects maternal systemic metabolism. Placenta, 2019, 83, e45.	1.5	1
14	Sex-specific regulation of stress-induced fetal glucocorticoid surge by the mouse placenta. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E109-E120.	3.5	36
15	Insulin-like Growth Factor II: An Essential Adult Stem Cell Niche Constituent in Brain and Intestine. Stem Cell Reports, 2019, 12, 816-830.	4.8	47
16	Fetal and trophoblast PI3K p110 $\hat{l}\pm$ have distinct roles in regulating resource supply to the growing fetus in mice. ELife, 2019, 8, .	6.0	36
17	Adipose tissue dysfunction as a central mechanism leading to dysmetabolic obesity triggered by chronic exposure to p,p $\hat{a} \in \mathbb{M}$ -DDE. Scientific Reports, 2017, 7, 2738.	3.3	32
18	Placental phenotype and the insulinâ€ŀike growth factors: resource allocation to fetal growth. Journal of Physiology, 2017, 595, 5057-5093.	2.9	120

IONEL SANDOVICI

#	Article	IF	CITATIONS
19	Mice with placental junctional zone Igf2 deletion fail to metabolically adapt during pregnancy. Placenta, 2017, 57, 247-248.	1.5	1
20	Ageing is associated with molecular signatures of inflammation and type 2 diabetes in rat pancreatic islets. Diabetologia, 2016, 59, 502-511.	6.3	20
21	Extracardiac control of embryonic cardiomyocyte proliferation and ventricular wall expansion. Cardiovascular Research, 2015, 105, 271-278.	3.8	53
22	Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis. Nature Communications, 2015, 6, 8265.	12.8	77
23	The role of the embryonic phosphoinositol kinase (PI3K) p110α in regulating placental phenotype and fetal growth. Placenta, 2015, 36, A19-A20.	1.5	0
24	Contribution of Placental Genomic Imprinting and Identification of Imprinted Genes. , 2014, , 275-284.		1
25	Parental-Specific Gene Expression and Epigenetic Analyses of Imprinted Genes in Mouse Placenta. , 2014, , 763-771.		0
26	Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes. Cellular and Molecular Life Sciences, 2013, 70, 1575-1595.	5.4	39
27	Establishment of Tissue-Specific Epigenetic States During Development. , 2013, , 35-62.		0
28	Placental adaptations to the maternal–fetal environment: implications for fetal growth and developmental programming. Reproductive BioMedicine Online, 2012, 25, 68-89.	2.4	165
29	<i>lgf2</i> pathway dependency of the <i>Trp53</i> developmental and tumour phenotypes. EMBO Molecular Medicine, 2012, 4, 705-718.	6.9	31
30	Maternal diet and aging alter the epigenetic control of a promoter–enhancer interaction at the <i>Hnf4a</i> gene in rat pancreatic islets. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5449-5454.	7.1	311
31	Developmental adaptations to increased fetal nutrient demand in mouse genetic models of Igf2â€mediated overgrowth. FASEB Journal, 2011, 25, 1737-1745.	0.5	62
32	Maternal diet, aging and diabetes meet at a chromatin loop. Aging, 2011, 3, 548-554.	3.1	26
33	PRDM9 sticks its zinc fingers into recombination hotspots and between species. F1000 Biology Reports, 2010, 2, .	4.0	12
34	Adaptations in placental nutrient transfer capacity to meet fetal growth demands depend on placental size in mice. Journal of Physiology, 2008, 586, 4567-4576.	2.9	165
35	Regulation of Placental Efficiency for Nutrient Transport by Imprinted Genes. Placenta, 2006, 27, 98-102.	1.5	184
36	Human Imprinted Chromosomal Regions Are Historical Hot-Spots of Recombination. PLoS Genetics, 2006, 2, e101.	3.5	40

IONEL SANDOVICI

#	Article	IF	CITATIONS
37	Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19219-19224.	7.1	306
38	Interindividual variability and parent of origin DNA methylation differences at specific human Alu elements. Human Molecular Genetics, 2005, 14, 2135-2143.	2.9	76
39	Familial aggregation of abnormal methylation of parental alleles at the IGF2/H19 and IGF2R differentially methylated regions. Human Molecular Genetics, 2004, 13, 781-781.	2.9	3
40	A longitudinal study of X-inactivation ratio in human females. Human Genetics, 2004, 115, 387-92.	3.8	56
41	Familial aggregation of abnormal methylation of parental alleles at the IGF2/H19 and IGF2R differentially methylated regions. Human Molecular Genetics, 2003, 12, 1569-1578.	2.9	89