Jurgita Antucheviciene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3225808/publications.pdf

Version: 2024-02-01

142 papers 6,177 citations

42 h-index 71 g-index

142 all docs $\begin{array}{c} 142 \\ \\ \text{docs citations} \end{array}$

times ranked

142

3326 citing authors

#	Article	IF	CITATIONS
1	Optimization of Weighted Aggregated Sum Product Assessment. Elektronika Ir Elektrotechnika, 2012, 122, .	0.4	572
2	Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry, 2021, 13, 525.	1.1	242
3	Extension of weighted aggregated sum product assessment with interval-valued intuitionistic fuzzy numbers (WASPAS-IVIF). Applied Soft Computing Journal, 2014, 24, 1013-1021.	4.1	219
4	A Hybrid Model Based on Fuzzy AHP and Fuzzy WASPAS for Construction Site Selection. International Journal of Computers, Communications and Control, 2015, 10, 113.	1.2	192
5	Multiple criteria evaluation of rural building's regeneration alternatives. Building and Environment, 2007, 42, 436-451.	3.0	175
6	Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues. Economic Research-Ekonomska Istrazivanja, 2016, 29, 857-887.	2.6	171
7	Evaluation of Ranking Accuracy in Multi-Criteria Decisions. Informatica, 2006, 17, 601-618.	1.5	152
8	FUZZY EXTENSION OF THE CODAS METHOD FOR MULTI-CRITERIA MARKET SEGMENT EVALUATION. Journal of Business Economics and Management, 2017, 18, 1-19.	1.1	150
9	A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Computers and Industrial Engineering, 2017, 112, 156-174.	3.4	140
10	A new hybrid fuzzy MCDM approach for evaluation of construction equipment with sustainability considerations. Archives of Civil and Mechanical Engineering, 2018, 18, 32-49.	1.9	139
11	ASSESSMENT OF THIRD-PARTY LOGISTICS PROVIDERS USING A CRITIC–WASPAS APPROACH WITH INTERVAL TYPE-2 FUZZY SETS. Transport, 2017, 32, 66-78.	0.6	128
12	Sustainable Decision-Making in Civil Engineering, Construction and Building Technology. Sustainability, 2018, 10, 14.	1.6	118
13	Supplier evaluation and selection in fuzzy environments: a review of MADM approaches. Economic Research-Ekonomska Istrazivanja, 2017, 30, 1073-1118.	2.6	112
14	Hybrid SWARA-COPRAS method for risk assessment in deep foundation excavation project: an iranian case study. Journal of Civil Engineering and Management, 2017, 23, 524-532.	1.9	105
15	HYBRID MULTIPLE CRITERIA DECISION MAKING METHODS: A REVIEW OF APPLICATIONS IN ENGINEERING. Scientia Iranica, 2016, 23, 1-20.	0.3	98
16	The Interval-Valued Intuitionistic Fuzzy MULTIMOORA Method for Group Decision Making in Engineering. Mathematical Problems in Engineering, 2015, 2015, 1-13.	0.6	97
17	A Novel Rough WASPAS Approach for Supplier Selection in a Company Manufacturing PVC Carpentry Products. Information (Switzerland), 2018, 9, 121.	1.7	93
18	Simultaneous Evaluation of Criteria and Alternatives (SECA) for Multi-Criteria Decision-Making. Informatica, 2018, 29, 265-280.	1.5	93

#	Article	IF	Citations
19	Measuring Congruence of Ranking Results Applying Particular MCDM Methods. Informatica, 2011, 22, 319-338.	1.5	92
20	MULTIPLE CRITERIA CONSTRUCTION MANAGEMENT DECISIONS CONSIDERING RELATIONS BETWEEN CRITERIA / DAUGIATIKSLIAI STATYBOS VALDYMO SPRENDIMAI ATSIŽVELGIANT Į RODIKLIŲ TARPUSAVIO PRIKLAUSOM Technological and Economic Development of Economy, 2010, 16, 109-125.	YBÄ~.	91
21	Multi-criteria Assessment of Facades' Alternatives: Peculiarities of Ranking Methodology. Procedia Engineering, 2013, 57, 107-112.	1.2	91
22	Stochastic EDAS method for multi-criteria decision-making with normally distributed data. Journal of Intelligent and Fuzzy Systems, 2017, 33, 1627-1638.	0.8	86
23	Selecting a Contractor by Using a Novel Method forMultiple Attribute Analysis: Weighted Aggregated SumProduct Assessment with Grey Values (WASPAS-G). Studies in Informatics and Control, 2015, 24, .	0.6	84
24	ASSESSMENT OF HEALTH AND SAFETY SOLUTIONS AT A CONSTRUCTION SITE. Journal of Civil Engineering and Management, 2013, 19, 728-737.	1.9	72
25	Solving Civil Engineering Problems by Means of Fuzzy and Stochastic MCDM Methods: Current State and Future Research. Mathematical Problems in Engineering, 2015, 2015, 1-16.	0.6	71
26	A Hybrid MCDM Approach for Strategic Project Portfolio Selection of Agro By-Products. Sustainability, 2017, 9, 1302.	1.6	67
27	Development of an indicator model and ranking of sustainable revitalization alternatives of derelict property: a Lithuanian case study. Sustainable Development, 2006, 14, 287-299.	6.9	65
28	Multiple-Criteria Decision-Making (MCDM) Techniques for Business Processes Information Management. Information (Switzerland), 2019, 10, 4.	1.7	64
29	APPLYING FUZZY MCDM FOR FINANCIAL PERFORMANCE EVALUATION OF IRANIAN COMPANIES. Technological and Economic Development of Economy, 2014, 20, 274-291.	2.3	63
30	A Dynamic Fuzzy Approach Based on the EDAS Method for Multi-Criteria Subcontractor Evaluation. Information (Switzerland), 2018, 9, 68.	1.7	63
31	A new hybrid simulation-based assignment approach for evaluating airlines with multiple service quality criteria. Journal of Air Transport Management, 2017, 63, 45-60.	2.4	61
32	UPGRADING THE OLD VERNACULAR BUILDING TO CONTEMPORARY NORMS: MULTIPLE CRITERIA APPROACH. Journal of Civil Engineering and Management, 2014, 20, 291-298.	1.9	57
33	Dam construction material selection by implementing the integrated SWARA–CODAS approach with target-based attributes. Archives of Civil and Mechanical Engineering, 2019, 19, 1194-1210.	1.9	56
34	The Location Selection for Roundabout Construction Using Rough BWM-Rough WASPAS Approach Based on a New Rough Hamy Aggregator. Sustainability, 2018, 10, 2817.	1.6	54
35	FQSPM-SWOT FOR STRATEGIC ALLIANCE PLANNING AND PARTNER SELECTION; CASE STUDY IN A HOLDING CAR MANUFACTURER COMPANY. Technological and Economic Development of Economy, 2017, 21, 165-185.	2.3	50
36	Cold Chain Logistics Management of Medicine with an Integrated Multi-Criteria Decision-Making Method. International Journal of Environmental Research and Public Health, 2019, 16, 4843.	1.2	49

#	Article	IF	Citations
37	An integrated approach for a sustainable supplier selection based on Industry 4.0 concept. Environmental Science and Pollution Research, 2021, , 1.	2.7	49
38	MULTI-CRITERIA DECISION MAKING IN CIVIL ENGINEERING: PART I $\hat{a} \in \text{``}$ A STATE-OF-THE-ART SURVEY. Engineering Structures and Technologies, 2016, 7, 103-113.	0.2	48
39	A new fuzzy approach based on BWM and fuzzy preference programming for hospital performance evaluation: A case study. Applied Soft Computing Journal, 2020, 92, 106279.	4.1	48
40	Measuring Performance in Transportation Companies in Developing Countries: A Novel Rough ARAS Model. Symmetry, 2018, 10, 434.	1.1	47
41	An Interval-Valued Intuitionistic Fuzzy Model Based on Extended VIKOR and MARCOS for Sustainable Supplier Selection in Organ Transplantation Networks for Healthcare Devices. Sustainability, 2022, 14, 3795.	1.6	46
42	SOLVING THE PROBLEMS OF DAYLIGHTING AND TRADITION CONTINUITY IN A RECONSTRUCTED VERNACULAR BUILDING. Journal of Civil Engineering and Management, 2013, 19, 873-882.	1.9	45
43	USING QSPM AND WASPAS METHODS FOR DETERMINING OUTSOURCING STRATEGIES. Journal of Business Economics and Management, 2014, 15, 729-743.	1.1	45
44	New complex proportional assessment approach using Einstein aggregation operators and improved score function for interval-valued Fermatean fuzzy sets. Computers and Industrial Engineering, 2022, 169, 108165.	3.4	44
45	Determination of laser cutting process conditions using the preference selection index method. Optics and Laser Technology, 2017, 89, 214-220.	2.2	39
46	MULTI-CRITERIA DECISION MAKING IN CIVIL ENGINEERING. PART II $\hat{a} \in$ APPLICATIONS. Engineering Structures and Technologies, 2016, 7, 151-167.	0.2	38
47	A Hybrid MCDM Approach Based on Fuzzy ANP and Fuzzy TOPSIS for Technology Selection. Informatica, 2015, 26, 369-388.	1.5	38
48	Sustainability in Construction Engineering. Sustainability, 2018, 10, 2236.	1.6	37
49	A novel dynamic credit risk evaluation method using data envelopment analysis with common weights and combination of multi-attribute decision-making methods. Computers and Operations Research, 2021, 129, 105223.	2.4	37
50	An approach for robust decision making rule generation: Solving transport and logistics decision making problems. Expert Systems With Applications, 2018, 106, 263-276.	4.4	35
51	An Extended Step-Wise Weight Assessment Ratio Analysis with Symmetric Interval Type-2 Fuzzy Sets for Determining the Subjective Weights of Criteria in Multi-Criteria Decision-Making Problems. Symmetry, 2018, 10, 91.	1.1	35
52	Digitalization as a Strategic Means of Achieving Sustainable Efficiencies in Construction Management: A Critical Review. Sustainability, 2021, 13, 5040.	1.6	35
53	Achieving Nearly Zero-Energy Buildings by applying multi-attribute assessment. Energy and Buildings, 2017, 143, 162-172.	3.1	34
54	IMPORTANCE-PERFORMANCE ANALYSIS BASED BALANCED SCORECARD FOR PERFORMANCE EVALUATION IN HIGHER EDUCATION INSTITUTIONS: AN INTEGRATED FUZZY APPROACH. Journal of Business Economics and Management, 2020, 21, 647-678.	1.1	33

#	Article	IF	CITATIONS
55	An interval type-2 fuzzy sets based Delphi approach to evaluate site selection indicators of sustainable vehicle shredding facilities. Applied Soft Computing Journal, 2022, 118, 108465.	4.1	32
56	A NEW HYBRID FUZZY CYBERNETIC ANALYTIC NETWORK PROCESS MODEL TO IDENTIFY SHARED RISKS IN PPP PROJECTS. International Journal of Strategic Property Management, 2016, 20, 409-426.	0.8	30
57	EVALUATION OF BUILDINGS' REDEVELOPMENT ALTERNATIVES WITH AN EMPHASIS ON THE MULTIPARTITE SUSTAINABILITY. International Journal of Strategic Property Management, 2004, 8, 121-128.	0.8	30
58	Application of MCDM and BIM for Evaluation of Asset Redevelopment Solutions. Studies in Informatics and Control, 2016, 25, .	0.6	29
59	MODELLING RENEWAL OF CONSTRUCTION OBJECTS APPLYING METHODS OF THE GAME THEORY. Technological and Economic Development of Economy, 2006, 12, 263-268.	2.3	29
60	A NEW DECISION MODEL FOR CROSS-DOCKING CENTER LOCATION IN LOGISTICS NETWORKS UNDER INTERVAL-VALUED INTUITIONISTIC FUZZY UNCERTAINTY. Transport, 2019, 34, 30-40.	0.6	29
61	AN INTEGRATED TYPE-2 FUZZY DECISION MODEL BASED ON WASPAS AND SECA FOR EVALUATION OF SUSTAINABLE MANUFACTURING STRATEGIES. Journal of Environmental Engineering and Landscape Management, 2019, 27, 187-200.	0.4	28
62	Multi-Objective and Multi-Attribute Optimization for Sustainable Development Decision Aiding. Sustainability, 2019, 11, 3069.	1.6	27
63	PROJECT PORTFOLIO SELECTION PROBLEMS: A REVIEW OF MODELS, UNCERTAINTY APPROACHES, SOLUTION TECHNIQUES, AND CASE STUDIES. Technological and Economic Development of Economy, 2019, 25, 1380-1412.	2.3	27
64	Team member selecting based on AHP and TOPSIS grey. Engineering Economics, 2012, 23, .	1.5	27
65	Determination of Manufacturing Process Conditions by Using MCDM Methods: Application in Laser Cutting. Engineering Economics, 2016, 27, .	1.5	27
66	Application of Hybrid SWARA–BIM in Reducing Reworks of Building Construction Projects from the Perspective of Time. Sustainability, 2020, 12, 8927.	1.6	26
67	USING FUZZY CHOQUET INTEGRAL OPERATOR FOR SUPPLIER SELECTION WITH ENVIRONMENTAL CONSIDERATIONS. Journal of Business Economics and Management, 2016, 17, 503-526.	1.1	25
68	A Decision Framework under a Linguistic Hesitant Fuzzy Set for Solving Multi-Criteria Group Decision Making Problems. Sustainability, 2018, 10, 2608.	1.6	25
69	Performance analysis of Civil Engineering Journals based on the Web of Science® database. Archives of Civil and Mechanical Engineering, 2014, 14, 519-527.	1.9	24
70	Recent Fuzzy Generalisations of Rough Sets Theory: A Systematic Review and Methodological Critique of the Literature. Complexity, 2017, 2017, 1-33.	0.9	24
71	Investigating the Environmental Impacts of Construction Projects in Time-Cost Trade-Off Project Scheduling Problems with CoCoSo Multi-Criteria Decision-Making Method. Sustainability, 2021, 13, 10922.	1.6	24
72	Assessment of Buildings Redevelopment Possibilities using MCDM and BIM Techniques. Procedia Engineering, 2017, 172, 846-850.	1.2	23

#	Article	IF	Citations
7 3	Ranking of Heritage Building Conversion Alternatives by Applying BIM and MCDM: A Case of Sapieha Palace in Vilnius. Symmetry, 2019, 11, 973.	1.1	23
74	Application of WASPAS Method as an Optimization Tool in Non-traditional Machining Processes. Information Technology and Control, 2015, 44, .	1.1	23
7 5	A novel model for multi-criteria assessment based on BWM and possibilistic chance-constrained programming. Computers and Industrial Engineering, 2021, 156, 107287.	3.4	21
76	Interval Type-2 Fuzzy c-Control Charts: An Application in a Food Company. Informatica, 2017, 28, 269-283.	1.5	21
77	NONLINEAR GENETIC-BASED MODEL FOR SUPPLIER SELECTION: A COMPARATIVE STUDY. Technological and Economic Development of Economy, 2017, 23, 178-195.	2.3	20
78	A NEW ANALYTICAL METHODOLOGY TO HANDLE TIME-COST TRADE-OFF PROBLEM WITH CONSIDERING QUALITY LOSS COST UNDER INTERVAL-VALUED FUZZY UNCERTAINTY. Technological and Economic Development of Economy, 2019, 25, 277-299.	2.3	20
79	APPLICATIONS OF FUZZY MULTIPLE CRITERIA DECISION MAKING METHODS IN CIVIL ENGINEERING: A STATE-OF-THE-ART SURVEY. Journal of Civil Engineering and Management, 2021, 27, 358-371.	1.9	19
80	A New Enhanced ARAS Method for Critical Path Selection of Engineering Projects with Interval Type-2 Fuzzy Sets. International Journal of Information Technology and Decision Making, 2021, 20, 37-65.	2.3	19
81	A MIXED INTERVAL TYPE-2 FUZZY BEST-WORST MACBETH APPROACH TO CHOOSE HUB AIRPORT IN DEVELOPING COUNTRIES: CASE OF IRANIAN PASSENGER AIRPORTS. Transport, 2019, 34, 639-651.	0.6	19
82	Modelling multidimensional redevelopment of derelict buildings. International Journal of Environment and Pollution, 2008, 35, 331.	0.2	18
83	Hybrid Group MCDM Model to Select the Most Effective Alternative of the Second Runway of the Airport. Symmetry, 2019, 11, 792.	1.1	18
84	A hybrid fuzzy-stochastic multi-criteria ABC inventory classification using possibilistic chance-constrained programming. Soft Computing, 2021, 25, 1065-1083.	2.1	18
85	BIBLIOMETRIC ANALYSIS OF THE JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT BETWEEN 2008 AND 2018. Journal of Civil Engineering and Management, 2019, 25, 402-410.	1.9	18
86	A Model for Shovel Capital Cost Estimation, Using a Hybrid Model of Multivariate Regression and Neural Networks. Symmetry, 2017, 9, 298.	1.1	17
87	Analyzing the Status of Sustainable Development in the Manufacturing Sector Using Multi-Expert Multi-Criteria Fuzzy Decision-Making and Integrated Triple Bottom Lines. International Journal of Environmental Research and Public Health, 2020, 17, 3800.	1.2	17
88	PRINCIPLES OF REVITALISATION OF DERELICT RURAL BUILDINGS. Journal of Civil Engineering and Management, 2003, 9, 225-233.	1.9	16
89	Decision Making Methods and Applications in Civil Engineering. Mathematical Problems in Engineering, 2015, 2015, 1-3.	0.6	16
90	MULTI-CRITERIA DECISION-MAKING METHOD BASED ON INTUITIONISTIC TRAPEZOIDAL FUZZY PRIORITISED OWA OPERATOR. Technological and Economic Development of Economy, 2017, 22, 453-469.	2.3	16

#	Article	IF	Citations
91	SMALL HYDRO-POWER PLANT PROJECT SELECTION USING FUZZY AXIOMATIC DESIGN PRINCIPLES. Technological and Economic Development of Economy, 2015, 21, 756-772.	2.3	15
92	Comparative Study of Urban Area Growth: Determining the Key Criteria of Inner Urban Development. Symmetry, 2019, 11, 406.	1.1	15
93	EVALUATION OF INFRASTRUCTURE PROJECTS BY A DECISION MODEL BASED ON RPR, MABAC, AND WASPAS METHODS WITH INTERVAL-VALUED INTUITIONISTIC FUZZY SETS. International Journal of Strategic Property Management, 2022, 26, 106-118.	0.8	15
94	SUPPLIER SELECTION FOR HOUSING DEVELOPMENT BY AN INTEGRATED METHOD WITH INTERVAL ROUGH BOUNDARIES. International Journal of Strategic Property Management, 2020, 24, 269-284.	0.8	14
95	Problems in reconstruction projects, BIM uses and decision-making: Lithuanian case studies. Procedia Engineering, 2017, 208, 125-128.	1.2	13
96	Assessing Sustainable Mobility Measures Applying Multicriteria Decision Making Methods. Sustainability, 2020, 12, 6067.	1.6	13
97	Interval Type-2 Fuzzy Super SBM Network DEA for Assessing Sustainability Performance of Third-Party Logistics Service Providers Considering Circular Economy Strategies in the Era of Industry 4.0. Sustainability, 2021, 13, 6497.	1.6	13
98	Internet of things and its challenges in supply chain management; a rough strength-relation analysis method. E A M: Ekonomie A Management, 2018, 21, 208-222.	0.4	13
99	Hierarchical Decision-making using a New Mathematical Model based on the Best-worst Method. International Journal of Computers, Communications and Control, 2020, 14, 710.	1.2	13
100	Assessment of Sustainable Mobility by MCDM Methods in the Science and Technology Parks of Vilnius, Lithuania. Sustainability, 2020, 12, 9947.	1.6	12
101	Improving the Results of the Earned Value Management Technique Using Artificial Neural Networks in Construction Projects. Symmetry, 2020, 12, 1745.	1.1	12
102	SUSTAINABLE INFRASTRUCTURE PROJECT SELECTION BY A NEW GROUP DECISION-MAKING FRAMEWORK INTRODUCING MORAS METHOD IN AN INTERVAL TYPE 2 FUZZY ENVIRONMENT. International Journal of Strategic Property Management, 2019, 23, 390-404.	0.8	12
103	The Journal Buildings: A Bibliometric Analysis (2011–2021). Buildings, 2022, 12, 37.	1.4	12
104	Application of Three Metaheuristic Algorithms to Time-Cost-Quality Trade-Off Project Scheduling Problem for Construction Projects Considering Time Value of Money. Symmetry, 2021, 13, 2402.	1.1	12
105	Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry. Symmetry, 2020, 12, 594.	1.1	11
106	An Integrated Decision Support Model Based on BWM and Fuzzy-VIKOR Techniques for Contractor Selection in Construction Projects. Sustainability, 2021, 13, 6933.	1.6	11
107	ENERGY-SAVING BUILDING PROGRAM EVALUATION WITH AN INTEGRATED METHOD UNDER LINGUISTIC ENVIRONMENT. Journal of Civil Engineering and Management, 2020, 26, 447-458.	1.9	11
108	Application of a Robust Decision-Making Rule for Comprehensive Assessment of Laser Cutting Conditions and Performance. Machines, 2022, 10, 153.	1.2	11

#	Article	IF	CITATIONS
109	Internet GIS-Based Multimodal Public Transport Trip Planning Information System for Travelers in Lithuania. ISPRS International Journal of Geo-Information, 2019, 8, 319.	1.4	10
110	Evaluation of the Influencing Factors on Job Satisfaction Based on Combination of PLS-SEM and F-MULTIMOORA Approach. Symmetry, 2019, 11, 24.	1.1	10
111	Trading off Time–Cost–Quality in Construction Project Scheduling Problems with Fuzzy SWARA–TOPSIS Approach. Buildings, 2021, 11, 387.	1.4	10
112	EVALUATION OF ALTERNATIVES APPLYING TOPSIS METHOD IN A FUZZY ENVIRONMENT. Technological and Economic Development of Economy, 2005, 11, 242-247.	2.3	10
113	Ranking of Bridge Design Alternatives: A TOPSIS-FADR Method. Baltic Journal of Road and Bridge Engineering, 2018, 13, .	0.4	10
114	A PROBABILISTIC LINGUISTIC VIKOR METHOD TO SOLVE MCDM PROBLEMS WITH INCONSISTENT CRITERIA FOR DIFFERENT ALTERNATIVES. Technological and Economic Development of Economy, 2022, 28, 559-580.	2.3	9
115	Civil Engineering and Symmetry. Symmetry, 2019, 11, 501.	1.1	8
116	Multi-Objective Sustainable Closed-Loop Supply Chain Network Design Considering Multiple Products with Different Quality Levels. Systems, 2022, 10, 94.	1.2	8
117	Rational use of derelict buildings from the viewpoint of sustainable development. International Journal of Environment and Sustainable Development, 2004, 3, 96.	0.2	7
118	Solution Models based on Symmetric and Asymmetric Information. Symmetry, 2019, 11, 500.	1.1	7
119	A New Approach to the Viable Ranking of Zero-Carbon Construction Materials with Generalized Fuzzy Information. Sustainability, 2022, 14, 7691.	1.6	7
120	PRIORITIZATION OF PETROLEUM SUPPLY CHAINS' DISRUPTION MANAGEMENT STRATEGIES USING COMBINED FRAMEWORK OF BSC APPROACH, FUZZY AHP AND FUZZY CHOQUET INTEGRAL OPERATOR. Journal of Business Economics and Management, 2017, 18, 897-919.	D 1.1	6
121	Managing Information Uncertainty and Complexity in Decision-Making. Complexity, 2017, 2017, 1-3.	0.9	6
122	A TYPE-2 FUZZY OPTIMIZATION MODEL FOR PROJECT PORTFOLIO SELECTION AND SCHEDULING INCORPORATING PROJECT INTERDEPENDENCY AND SPLITTING. Technological and Economic Development of Economy, 2021, 27, 493-510.	2.3	6
123	DEVELOPING AN INTEGRATED MODEL FOR EVALUATING R&D ORGANIZATIONS' PERFORMANCE: COMBINATION OF DEA-ANP. Technological and Economic Development of Economy, 2021, 27, 970-991.	2.3	6
124	Mathematical Models for Dealing with Risk in Engineering. Mathematical Problems in Engineering, 2016, 2016, 1-3.	0.6	5
125	A Bibliometric Analysis of Symmetry (2009–2019). Symmetry, 2020, 12, 1304.	1.1	5
126	Symmetric and Asymmetric Data in Solution Models. Symmetry, 2021, 13, 1045.	1.1	5

#	Article	IF	CITATIONS
127	Performance Prediction of Construction Projects Based on the Causes of Claims: A System Dynamics Approach. Sustainability, 2022, 14, 4138.	1.6	5
128	Effect of integration of green constructs and traditional constructs of brand on green purchase intention of customers. E A M: Ekonomie A Management, 2017, 20, 219-237.	0.4	3
129	CONVERSION OF INDUSTRIAL BUILDINGS AND AREAS IN TERMS OF SUSTAINABLE DEVELOPMENT BY USING BIM TECHNOLOGY: ANALYSIS AND FURTHER DEVELOPMENTS / INDUSTRINIŲ PASTATŲ IR TERITORIJŲ KONVEI DARNAUS VYSTYMOSI POŹ⁄2IŪRIU TAIKANT BIM TECHNOLOGIJAS: SITUACIJOS ANALIZÄ— IR PERSPEKTYVOS. SEFUTURE OF LITHURDIA. 2016. 7. 503-513.	RSIJA O O cience:	3
130	The Impact of Outsourcing in Terms of Access and Quality of Health Services from Participants Attitude. Engineering Economics, 2013 , 24 , .	1.5	3
131	PRINCIPLES OF REVITALISATION OF DERELICT RURAL BUILDINGS. Journal of Civil Engineering and Management, 2003, 9, 225-233.	1.9	2
132	Implementing BIM for industrial and heritage building conversion. , 0, , .		2
133	A Bi-Objective Model for Scheduling Construction Projects Using Critical Chain Method and Interval-Valued Fuzzy Sets. Buildings, 2022, 12, 904.	1.4	2
134	ANALYSIS OF THE BIM-M DATA MODEL APPLICATION. Science: Future of Lithuania, 2021, 13, 1-4.	0.0	1
135	THE 25TH ANNIVERSARY OF THE JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT: EDITOR'S INTRODUCTION. Journal of Civil Engineering and Management, 2019, 25, 399-401.	1.9	1
136	Assessment of Universities' and Higher Education Centers' Preparedness for Successful Establishment of Enterprise Resource Planning Based on SWARA Method. Engineering Economics, 2019, 30, 496-506.	1.5	1
137	Sustainable Construction Engineering and Management. Sustainability, 2021, 13, 13028.	1.6	1
138	A LIFE DEDICATED TO SCIENCE: ON THE OCCASION OF THE 70TH BIRTHDAY OF EDITOR-IN-CHIEF EDMUNDAS KAZIMIERAS ZAVADSKAS. Journal of Civil Engineering and Management, 2014, 20, 311-314.	1.9	0
139	THE 20TH ANNIVERSARY OF THE JOURNAL: EDITOR'S INTRODUCTION. Journal of Civil Engineering and Management, 2014, 20, 309-310.	1.9	0
140	Sustainable development of Lithuanian vernacular architecture. , 2014, , .		0
141	An Integrated Grey-Based Approach for Multi FMSs Combination Selection. Informatica, 2016, 27, 733-754.	1.5	0
142	Initial data preparation for 3D modelling of heritage building. , 0, , .		0