John D Macmicking

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3225725/publications.pdf

Version: 2024-02-01

45 papers 16,557 citations

126858 33 h-index 243529 44 g-index

47 all docs

47 docs citations

47 times ranked

25993 citing authors

#	Article	IF	CITATIONS
1	Increasing the resilience of plant immunity to a warming climate. Nature, 2022, 607, 339-344.	13.7	72
2	A phase-separated nuclear GBPL circuit controls immunity in plants. Nature, 2021, 594, 424-429.	13.7	79
3	A human apolipoprotein L with detergent-like activity kills intracellular pathogens. Science, 2021, 373, .	6.0	50
4	Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nature Immunology, 2020, 21, 880-891.	7.0	182
5	Cell-autonomous immunity by IFN-induced GBPs in animals and plants. Current Opinion in Immunology, 2019, 60, 71-80.	2.4	31
6	Interferon-induced guanylate-binding proteins: Guardians of host defense in health and disease. Journal of Experimental Medicine, 2019, 216, 482-500.	4.2	184
7	NADPH Oxidase and Guanylate Binding Protein 5 Restrict Survival of Avirulent Type III Strains of Toxoplasma gondii in Naive Macrophages. MBio, 2018, 9, .	1.8	31
8	Bacteria disarm host-defence proteins. Nature, 2017, 551, 303-304.	13.7	5
9	E3 Ubiquitin ligase ZNRF4 negatively regulates NOD2 signalling and induces tolerance to MDP. Nature Communications, 2017, 8, 15865.	5.8	26
10	Evolution of Cell-Autonomous Effector Mechanisms in Macrophages versus Non-Immune Cells. , 2017, , 615-635.		0
11	The cellular endosomal protein stannin inhibits intracellular trafficking of human papillomavirus during virus entry. Journal of General Virology, 2017, 98, 2821-2836.	1.3	11
12	Evolution of Cell-Autonomous Effector Mechanisms in Macrophages versus Non-Immune Cells. Microbiology Spectrum, 2016, 4, .	1.2	21
13	Interferon-induced guanylate-binding proteins in inflammasome activation and host defense. Nature Immunology, 2016, 17, 481-489.	7.0	125
14	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
15	Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants. Journal of Biological Chemistry, 2016, 291, 1123-1136.	1.6	149
16	Cell-Autonomous Effector Mechanisms against Mycobacterium tuberculosis. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a018507-a018507.	2.9	32
17	Cellular Self-Defense: How Cell-Autonomous Immunity Protects Against Pathogens. Science, 2013, 340, 701-706.	6.0	231
18	Guanylate-binding Protein 1 (Gbp1) Contributes to Cell-autonomous Immunity against Toxoplasma gondii. PLoS Pathogens, 2013, 9, e1003320.	2.1	170

#	Article	IF	CITATIONS
19	Irf8-Regulated Genomic Responses Drive Pathological Inflammation during Cerebral Malaria. PLoS Pathogens, 2013, 9, e1003491.	2.1	63
20	Macrophage migration inhibitory factor (MIF) is a critical mediator of the innate immune response to <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2997-3006.	3.3	120
21	IFN- \hat{l}^3 Elicits Macrophage Autophagy via the p38 MAPK Signaling Pathway. Journal of Immunology, 2012, 189, 813-818.	0.4	148
22	IFN-Inducible GTPases in Host Cell Defense. Cell Host and Microbe, 2012, 12, 432-444.	5.1	259
23	Crossing the Rubicon: New Roads Lead to Host Defense. Cell Host and Microbe, 2012, 11, 221-223.	5.1	6
24	GBP5 Promotes NLRP3 Inflammasome Assembly and Immunity in Mammals. Science, 2012, 336, 481-485.	6.0	409
25	Interferon-inducible effector mechanisms in cell-autonomous immunity. Nature Reviews Immunology, 2012, 12, 367-382.	10.6	461
26	A Family of IFN-γ–Inducible 65-kD GTPases Protects Against Bacterial Infection. Science, 2011, 332, 717-721.	6.0	419
27	Interferon Regulatory Factor 8 Regulates Pathways for Antigen Presentation in Myeloid Cells and during Tuberculosis. PLoS Genetics, 2011, 7, e1002097.	1.5	85
28	A Role for Lipid Bodies in the Cross-presentation of Phagocytosed Antigens by MHC Class I in Dendritic Cells. Immunity, 2009, 31, 232-244.	6.6	146
29	Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P2 and PtdIns(3,4,5)P3 promotes immunity to mycobacteria. Nature Immunology, 2009, 10, 907-917.	7.0	107
30	Recognizing Macrophage Activation and Host Defense. Cell Host and Microbe, 2009, 5, 405-407.	5.1	18
31	M. tuberculosis passes the litmus test. Nature Medicine, 2008, 14, 809-810.	15.2	4
32	Emerging themes in IFN- \hat{l}^3 -induced macrophage immunity by the p47 and p65 GTPase families. Immunobiology, 2008, 212, 771-784.	0.8	81
33	Bacterial Phagosome Acidification Within IFN-Î ³ -Activated Macrophages: Role of Host p47	0.4	3
34	Immune control of phagosomal bacteria by p47 GTPases. Current Opinion in Microbiology, 2005, 8, 74-82.	2.3	86
35	Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Molecular Microbiology, 2004, 52, 1291-1302.	1.2	281
36	IFN-inducible GTPases and immunity to intracellular pathogens. Trends in Immunology, 2004, 25, 601-609.	2.9	209

#	Article	IF	CITATIONS
37	Immune Control of Tuberculosis by IFN-Â-Inducible LRG-47. Science, 2003, 302, 654-659.	6.0	629
38	Regulation of Peripheral Lymph Node Genesis by the Tumor Necrosis Factor Family Member Trance. Journal of Experimental Medicine, 2000, 192, 1467-1478.	4.2	249
39	Phenotype of Mice and Macrophages Deficient in Both Phagocyte Oxidase and Inducible Nitric Oxide Synthase. Immunity, 1999, 10, 29-38.	6.6	472
40	Type 1 Interferon (IFNÎ \pm /β) and Type 2 Nitric Oxide Synthase Regulate the Innate Immune Response to a Protozoan Parasite. Immunity, 1998, 8, 77-87.	6.6	354
41	Rapid Interferon γ–dependent Clearance of Influenza A Virus and Protection from Consolidating Pneumonitis in Nitric Oxide Synthase 2–deficient Mice. Journal of Experimental Medicine, 1998, 188, 1541-1546.	4.2	185
42	Essential Role of Induced Nitric Oxide in the Initiation of the Inflammatory Response after Hemorrhagic Shock. Journal of Experimental Medicine, 1998, 187, 917-928.	4.2	457
43	Identification of <i>Nitric Oxide Synthase 2</i> as an Innate Resistance Locus against Ectromelia Virus Infection. Journal of Virology, 1998, 72, 7703-7706.	1.5	59
44	NITRIC OXIDE AND MACROPHAGE FUNCTION. Annual Review of Immunology, 1997, 15, 323-350.	9.5	3,707
45	Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell, 1995, 81, 641-650.	13.5	1,424