
Hafiz Ghulam Abbas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3225723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Se-Rich MoSe ₂ Nanosheets and Their Superior Electrocatalytic Performance for Hydrogen Evolution Reaction. ACS Nano, 2020, 14, 6295-6304.	14.6	125
2	Two-dimensional GeAs with a visible range band gap. Journal of Materials Chemistry A, 2018, 6, 9089-9098.	10.3	55
3	Intercalation of aromatic amine for the 2H–1T′ phase transition of MoS ₂ by experiments and calculations. Nanoscale, 2018, 10, 11349-11356.	5.6	54
4	Intercalated complexes of 1T′-MoS ₂ nanosheets with alkylated phenylenediamines as excellent catalysts for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 2334-2343.	10.3	41
5	Nitrogen-rich 1T′-MoS ₂ layered nanostructures using alkyl amines for high catalytic performance toward hydrogen evolution. Nanoscale, 2018, 10, 14726-14735.	5.6	39
6	Stable methylammonium-intercalated 1T′-MoS ₂ for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 5613-5617.	10.3	38
7	Two-dimensional MoS ₂ /Fe-phthalocyanine hybrid nanostructures as excellent electrocatalysts for hydrogen evolution and oxygen reduction reactions. Nanoscale, 2019, 11, 14266-14275.	5.6	32
8	Development of a WS ₂ /MoTe ₂ heterostructure as a counter electrode for the improved performance in dye-sensitized solar cells. Inorganic Chemistry Frontiers, 2018, 5, 3178-3183.	6.0	27
9	Intercalation of cobaltocene into WS ₂ nanosheets for enhanced catalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 8101-8106.	10.3	26
10	Inorganic molecule (O ₂ , NO) adsorption on nitrogen- and phosphorus-doped MoS ₂ monolayer using first principle calculations. RSC Advances, 2018, 8, 38656-38666.	3.6	21
11	Two dimensional MoS2 meets porphyrins via intercalation to enhance the electrocatalytic activity toward hydrogen evolution. Nanoscale, 2019, 11, 3780-3785.	5.6	21
12	Non-Janus WSSe/MoSSe Heterobilayer and Its Photocatalytic Band Offset. Journal of Physical Chemistry C, 2020, 124, 3812-3819.	3.1	11
13	Role of nanosize icosahedral quasicrystal of Mg-Al and Mg-Ca alloys in avoiding crystallization of liquid Mg: Ab initio molecular dynamics study. Journal of Non-Crystalline Solids, 2018, 499, 173-182.	3.1	8
14	Crystallization mechanism of liquid tellurium from classical molecular dynamics simulation. Materials Chemistry and Physics, 2020, 240, 122235.	4.0	6
15	Orientation-specific switching of inelastic electron tunneling in an oxygen–pyridine complex adsorbed onto an Ag(110) surface. Journal of Chemical Physics, 2019, 151, 114703.	3.0	0
16	Structural Transformation in Liquid Tellurium from Stillinger–Weber Potential. Materials Proceedings, 2020, 4, .	0.2	0