Michael Parmentier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3225161/publications.pdf Version: 2024-02-01

		687363	794594
20	616	13	19
papers	citations	h-index	g-index
21	21	21	459
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surfactant technology applied toward an active pharmaceutical ingredient: more than a simple green chemistry advance. Green Chemistry, 2016, 18, 14-19.	9.0	126
2	Effects of Co-solvents on Reactions Run under Micellar Catalysis Conditions. Organic Letters, 2017, 19, 194-197.	4.6	94
3	A General and Practical Alternative to Polar Aprotic Solvents Exemplified on an Amide Bond Formation. Organic Process Research and Development, 2016, 20, 1388-1391.	2.7	60
4	Surfactant Technology: With New Rules, Designing New Sequences Is Required!. Organic Process Research and Development, 2020, 24, 841-849.	2.7	47
5	Strategies to Tackle the Waste Water from α-Tocopherol-Derived Surfactant Chemistry. Organic Process Research and Development, 2021, 25, 900-915.	2.7	44
6	Selective Amidation of Unprotected Amino Alcohols Using Surfactant-in-Water Technology: A Highly Desirable Alternative to Reprotoxic Polar Aprotic Solvents. Organic Process Research and Development, 2016, 20, 1104-1107.	2.7	42
7	A General Kilogram Scale Protocol for Suzuki–Miyaura Cross-Coupling in Water with TPCS-750-M Surfactant. Organic Process Research and Development, 2020, 24, 1536-1542.	2.7	40
8	Micelle-Enabled Suzuki–Miyaura Cross-Coupling of Heteroaryl Boronate Esters. Journal of Organic Chemistry, 2018, 83, 7523-7527.	3.2	31
9	Switching from organic solvents to water at an industrial scale. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 13-17.	5.9	27
10	Synthesis and Physicochemical Properties of 2-SF ₅ -(Aza)Indoles, a New Family of SF ₅ Heterocycles. ACS Organic & Inorganic Au, 2021, 1, 43-50.	4.0	25
11	Simple Synthesis of Amides via Their Acid Chlorides in Aqueous TPCS-750-M. Organic Process Research and Development, 2020, 24, 1543-1548.	2.7	23
12	A New Dioxazolone for the Synthesis of 1,2â€Aminoalcohols via Iridium(III) atalyzed C(sp ³)â~H Amidation. Angewandte Chemie - International Edition, 2021, 60, 22948-22955.	13.8	19
13	A General Protocol for Robust <i>Sonogashira</i> Reactions in Micellar Medium. Helvetica Chimica Acta, 2019, 102, e1900024.	1.6	14
14	Micelle enabled C(sp ²)–C(sp ³) cross-electrophile coupling in water <i>via</i> synergistic nickel and copper catalysis. Chemical Communications, 2021, 57, 7629-7632.	4.1	7
15	Optimized Synthesis of 7-Azaindazole by a Diels–Alder Cascade and Associated Process Safety. Organic Process Research and Development, 2020, 24, 776-786.	2.7	6
16	A New Dioxazolone for the Synthesis of 1,2â€Aminoalcohols via Iridium(III)â€Catalyzed C(sp ³)â^'H Amidation. Angewandte Chemie, 2021, 133, 23130-23137.	2.0	4
17	Green Chemistry Articles of Interest to the Pharmaceutical Industry. Organic Process Research and Development, 2022, 26, 251-262.	2.7	4
18	Interface-rich Aqueous Systems for Sustainable Chemical Synthesis. Chimia, 2019, 73, 714.	0.6	1

#	ARTICLE	IF	CITATIONS
19	Green Chemistry Articles of Interest to the Pharmaceutical Industry. Organic Process Research and Development, 2021, 25, 703-712.	2.7	1
20	Green Chemistry Articles of Interest to the Pharmaceutical Industry. Organic Process Research and Development, 2021, 25, 2167-2176.	2.7	1