
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3225152/publications.pdf Version: 2024-02-01



REBECCALAI

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Evidence for surface effects on the intermolecular interactions in Fe( <scp>ii</scp> ) spin crossover coordination polymers. Physical Chemistry Chemical Physics, 2022, 24, 883-894.         | 1.3 | 11        |
| 2  | Evidence for long drift carrier lifetimes in [Fe(Htrz)2(trz)](BF4) plus polyaniline composites. Organic<br>Electronics, 2022, 105, 106516.                                                   | 1.4 | 6         |
| 3  | Multiplexed Monitoring of Neurochemicals via Electrografting-Enabled Site-Selective<br>Functionalization of Aptamers on Field-Effect Transistors. Analytical Chemistry, 2022, 94, 8605-8617. | 3.2 | 21        |
| 4  | Laser vibrational excitation of radicals to prevent crystallinity degradation caused by boron doping in diamond. Science Advances, 2021, 7, .                                                | 4.7 | 6         |
| 5  | Engineering uranyl-chelating peptides from NikR for electrochemical peptide-based sensing applications. Journal of Electroanalytical Chemistry, 2020, 858, 113698.                           | 1.9 | 6         |
| 6  | Waste to wealth translation of e-waste to plasmonic nanostructures for surface-enhanced Raman scattering. Applied Nanoscience (Switzerland), 2020, 10, 1615-1623.                            | 1.6 | 11        |
| 7  | Progress in the materials for optical detection of arsenic in water. TrAC - Trends in Analytical Chemistry, 2019, 110, 97-115.                                                               | 5.8 | 47        |
| 8  | Electrochemical aptamer-based sensors for food and water analysis: AÂreview. Analytica Chimica Acta,<br>2019, 1051, 1-23.                                                                    | 2.6 | 188       |
| 9  | A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of ampicillin in complex samples. Talanta, 2018, 176, 619-624.                                           | 2.9 | 85        |
| 10 | Towards the development of a sensitive and selective electrochemical aptamer-based ampicillin sensor. Sensors and Actuators B: Chemical, 2018, 258, 722-729.                                 | 4.0 | 52        |
| 11 | Application of Calcium-Binding Motif of E-Cadherin for Electrochemical Detection of Pb(II). Analytical<br>Chemistry, 2018, 90, 6519-6525.                                                    | 3.2 | 21        |
| 12 | Effects of redox label location on the performance of an electrochemical aptamer-based tumor necrosis factor-alpha sensor. Talanta, 2018, 189, 585-591.                                      | 2.9 | 23        |
| 13 | Electrochemiluminescence Detection in Paperâ€Based and Other Inexpensive Microfluidic Devices.<br>ChemElectroChem, 2017, 4, 1594-1603.                                                       | 1.7 | 32        |
| 14 | Iron(III)â€mediated Electrochemical Detection of Levofloxacin in Complex Biological Samples.<br>Electroanalysis, 2017, 29, 2672-2677.                                                        | 1.5 | 9         |
| 15 | A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of Cd(II). Journal of Electroanalytical Chemistry, 2017, 803, 89-94.                                     | 1.9 | 65        |
| 16 | Effects of DNA Probe Length on the Performance of a Dynamicsâ€based Electrochemical Hg(II) Sensor.<br>Electroanalysis, 2017, 29, 2239-2245.                                                  | 1.5 | 6         |
| 17 | Tunable Signal-Off and Signal-On Electrochemical Cisplatin Sensor. Analytical Chemistry, 2017, 89,<br>9984-9989.                                                                             | 3.2 | 24        |
| 18 | Hexavalent Chromium as an Electrocatalyst in DNA Sensing. Analytical Chemistry, 2017, 89, 13342-13348.                                                                                       | 3.2 | 7         |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Folding- and Dynamics-Based Electrochemical DNA Sensors. Methods in Enzymology, 2017, 589, 221-252.                                                                                                        | 0.4 | 7         |
| 20 | Solution-stable anisotropic carbon nanotube/graphene hybrids based on slanted columnar thin films for chemical sensing. RSC Advances, 2016, 6, 63235-63240.                                                | 1.7 | 3         |
| 21 | A reagentless DNAâ€based electrochemical silver(I) sensor for real time detection of Ag(I) – the effect<br>of probe sequence and orientation on sensor response. Biotechnology Journal, 2016, 11, 788-796. | 1.8 | 26        |
| 22 | Electrochemical Gold(III) Sensor with High Sensitivity and Tunable Dynamic Range. Analytical Chemistry, 2016, 88, 2227-2233.                                                                               | 3.2 | 31        |
| 23 | Scanning Electrochemical and Fluorescence Microscopy for Detection of Reactive Oxygen Species in Living Cells. ACS Symposium Series, 2015, , 415-430.                                                      | 0.5 | 3         |
| 24 | Methylene Blue-Mediated Electrocatalytic Detection of Hexavalent Chromium. Analytical Chemistry, 2015, 87, 2560-2564.                                                                                      | 3.2 | 81        |
| 25 | Comparison of Mannose, Ethylene Glycol, and Methoxy-Terminated Diluents on Specificity and<br>Selectivity of Electrochemical Peptide-Based Sensors. Analytical Chemistry, 2015, 87, 6966-6973.             | 3.2 | 14        |
| 26 | Comparison of nanostructured silver-modified silver and carbon ultramicroelectrodes for electrochemical detection of nitrate. Analytica Chimica Acta, 2015, 892, 153-159.                                  | 2.6 | 35        |
| 27 | Electrochemical Detection of Platinum(IV) Prodrug Satraplatin in Serum. Analytical Chemistry, 2015, 87, 11092-11097.                                                                                       | 3.2 | 15        |
| 28 | Incorporation of extra amino acids in peptide recognition probe to improve specificity and selectivity of an electrochemical peptide-based sensor. Analytica Chimica Acta, 2015, 886, 157-164.             | 2.6 | 19        |
| 29 | Electrochemical hydrogen peroxide sensors fabricated using cytochrome c immobilized on<br>macroelectrodes and ultramicroelectrodes. Colloids and Surfaces B: Biointerfaces, 2014, 123, 866-869.            | 2.5 | 15        |
| 30 | Use of thiolated oligonucleotides as anti-fouling diluents in electrochemical peptide-based sensors.<br>Chemical Communications, 2014, 50, 4690.                                                           | 2.2 | 43        |
| 31 | A Hg(ii)-mediated "signal-on―electrochemical glutathione sensor. Chemical Communications, 2014, 50,<br>8385.                                                                                               | 2.2 | 26        |
| 32 | Effects of DNA Probe and Target Flexibility on the Performance of a "Signal-on―Electrochemical DNA<br>Sensor. Analytical Chemistry, 2014, 86, 8888-8895.                                                   | 3.2 | 35        |
| 33 | Fabrication of Electrochemical DNA Sensors on Gold-Modified Recessed Platinum Nanoelectrodes.<br>Analytical Chemistry, 2014, 86, 2849-2852.                                                                | 3.2 | 48        |
| 34 | Application of electrochemical surface plasmon resonance spectroscopy for characterization of electrochemical DNA sensors. Colloids and Surfaces B: Biointerfaces, 2014, 122, 835-839.                     | 2.5 | 19        |
| 35 | Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors. Analytica Chimica Acta, 2014, 812, 176-183.                                   | 2.6 | 13        |
| 36 | Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry. Analytica Chimica Acta, 2014, 810, 79-85.                         | 2.6 | 66        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | An electrochemical peptide-based Ara h 2 antibody sensor fabricated on a nickel(II)-nitriloacetic acid<br>self-assembled monolayer using a His-tagged peptide. Analytica Chimica Acta, 2014, 828, 85-91. | 2.6 | 20        |
| 38 | Electrochemical techniques for characterization of stem-loop probe and linear probe-based DNA sensors. Methods, 2013, 64, 267-275.                                                                       | 1.9 | 49        |
| 39 | Development of a "signal-on―electrochemical DNA sensor with an oligo-thymine spacer for point<br>mutation detection. Chemical Communications, 2013, 49, 3422.                                            | 2.2 | 49        |
| 40 | Development of an electrochemical insulin sensor based on the insulin-linked polymorphicregion.<br>Biosensors and Bioelectronics, 2013, 42, 62-68.                                                       | 5.3 | 62        |
| 41 | Design and Synthesis of a Class of Twinâ€Chain Amphiphiles for Selfâ€Assembled Monolayerâ€Based<br>Electrochemical Biosensor Applications. European Journal of Organic Chemistry, 2013, 2013, 3263-3270. | 1.2 | 3         |
| 42 | A reagentless and reusable electrochemical DNA sensor based on target hybridization-induced stem-loop probe formation. Chemical Communications, 2012, 48, 10523.                                         | 2.2 | 53        |
| 43 | Effect of diluent chain length on the performance of the electrochemical DNA sensor at elevated temperature. Analyst, The, 2011, 136, 134-139.                                                           | 1.7 | 22        |
| 44 | Design and characterization of a metal ion–imidazole self-assembled monolayer for reversible<br>immobilization of histidine-tagged peptides. Chemical Communications, 2011, 47, 12391.                   | 2.2 | 9         |
| 45 | Design and characterization of an electrochemical peptide-based sensor fabricated via"click―<br>chemistry. Chemical Communications, 2011, 47, 8688.                                                      | 2.2 | 38        |
| 46 | Comparison of the Stem-Loop and Linear Probe-Based Electrochemical DNA Sensors by Alternating<br>Current Voltammetry and Cyclic Voltammetry. Langmuir, 2011, 27, 14669-14677.                            | 1.6 | 66        |
| 47 | A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood. Biosensors and Bioelectronics, 2011, 26, 2442-2447.                                 | 5.3 | 145       |
| 48 | An electrochemical peptide-based biosensing platform for HIV detection. Chemical Communications, 2010, 46, 395-397.                                                                                      | 2.2 | 74        |
| 49 | Fabrication of an electrochemical DNA sensor array via potential-assisted "click―chemistry. Chemical<br>Communications, 2010, 46, 3941.                                                                  | 2.2 | 39        |
| 50 | Folding-based electrochemical DNA sensor fabricated by "click―chemistry. Chemical Communications,<br>2009, , 4835.                                                                                       | 2.2 | 31        |
| 51 | Continuous, Real-Time Monitoring of Cocaine in Undiluted Blood Serum via a Microfluidic,<br>Electrochemical Aptamer-Based Sensor. Journal of the American Chemical Society, 2009, 131, 4262-4266.        | 6.6 | 333       |
| 52 | Folding-based electrochemical DNA sensor fabricated on a gold-plated screen-printed carbon electrode. Chemical Communications, 2009, , 2902.                                                             | 2.2 | 43        |
| 53 | Microfluidic Device Architecture for Electrochemical Patterning and Detection of Multiple DNA Sequences. Langmuir, 2008, 24, 1102-1107.                                                                  | 1.6 | 77        |
| 54 | Aptamer-Based Electrochemical Detection of Picomolar Platelet-Derived Growth Factor Directly in<br>Blood Serum. Analytical Chemistry, 2007, 79, 229-233.                                                 | 3.2 | 329       |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Linear, redox modified DNA probes as electrochemical DNA sensors. Chemical Communications, 2007, , 3768.                                                                                                              | 2.2 | 108       |
| 56 | Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor. Langmuir, 2007, 23, 6827-6834.                                                                                                         | 1.6 | 293       |
| 57 | An Electronic, Aptamer-Based Small-Molecule Sensor for the Rapid, Label-Free Detection of Cocaine in<br>Adulterated Samples and Biological Fluids. Journal of the American Chemical Society, 2006, 128,<br>3138-3139. | 6.6 | 759       |
| 58 | Comparison of the Signaling and Stability of Electrochemical DNA Sensors Fabricated from 6- or 11-Carbon Self-Assembled Monolayers. Langmuir, 2006, 22, 10796-10800.                                                  | 1.6 | 103       |
| 59 | Differential Labeling of Closely Spaced Biosensor Electrodes via Electrochemical Lithography.<br>Langmuir, 2006, 22, 1932-1936.                                                                                       | 1.6 | 29        |
| 60 | Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor.<br>Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4017-4021.      | 3.3 | 174       |