
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3225121/publications.pdf Version: 2024-02-01

SONCRAL OUL

#	Article	IF	CITATIONS
1	High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system. Green Chemistry, 2013, 15, 1967.	9.0	213
2	One-Pot Catalytic Conversion of Raw Lignocellulosic Biomass into Gasoline Alkanes and Chemicals over LiTaMoO ₆ and Ru/C in Aqueous Phosphoric Acid. ACS Sustainable Chemistry and Engineering, 2015, 3, 1745-1755.	6.7	164
3	Hydrodeoxygenation of Methyl Palmitate over Supported Ni Catalysts for Diesel-like Fuel Production. Energy & Fuels, 2012, 26, 3747-3755.	5.1	144
4	Synergistically Tuning Electronic Structure of Porous βâ€Mo ₂ C Spheres by Co Doping and Moâ€Vacancies Defect Engineering for Optimizing Hydrogen Evolution Reaction Activity. Advanced Functional Materials, 2020, 30, 2000561.	14.9	141
5	An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresource Technology, 2014, 154, 10-17.	9.6	139
6	Investigation on the structural effect of lignin during the hydrogenolysis process. Bioresource Technology, 2016, 200, 14-22.	9.6	125
7	Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C. Bioresource Technology, 2015, 179, 84-90.	9.6	120
8	Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts. Bioresource Technology, 2017, 226, 125-131.	9.6	112
9	Zirconium phosphate combined with Ru/C as a highly efficient catalyst for the direct transformation of cellulose to C ₆ alditols. Green Chemistry, 2014, 16, 3305-3312.	9.0	99
10	From lignin to cycloparaffins and aromatics: Directional synthesis of jet and diesel fuel range biofuels using biomass. Bioresource Technology, 2015, 183, 10-17.	9.6	98
11	A simple method to prepare highly active and dispersed Ni/MCM-41 catalysts by co-impregnation. Catalysis Communications, 2013, 42, 73-78.	3.3	83
12	Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: Kinetics and products. Journal of Analytical and Applied Pyrolysis, 2014, 108, 295-300.	5.5	81
13	Novel Catalyst for Cracking of Biomass Tar. Energy & Fuels, 2005, 19, 22-27.	5.1	79
14	Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk. Energy, 2015, 86, 488-499.	8.8	77
15	Insight into the solvent, temperature and time effects on the hydrogenolysis of hydrolyzed lignin. Bioresource Technology, 2016, 221, 568-575.	9.6	74
16	Catalytic Upgrading of Bio-oil over Ni-Based Catalysts Supported on Mixed Oxides. Energy & Fuels, 2014, 28, 2562-2570.	5.1	71
17	Jet-Fuel Range Hydrocarbons from Biomass-Derived Sorbitol over Ni-HZSM-5/SBA-15 Catalyst. Catalysts, 2015, 5, 2147-2160.	3.5	61
18	Hydrodeoxygenation of palm oil to hydrocarbon fuels over Ni/SAPO-11 catalysts. Chinese Journal of Catalysis. 2014, 35, 748-756.	14.0	59

#	Article	IF	CITATIONS
19	Mechanistic insights into the effects of support on the reaction pathway for aqueous-phase hydrogenation of carboxylic acid over the supported Ru catalysts. Applied Catalysis A: General, 2014, 478, 117-128.	4.3	54
20	Highly Selective Sorbitol Hydrogenolysis to Liquid Alkanes over Ni/HZSMâ€5 Catalysts Modified with Pure Silica MCMâ€41. ChemCatChem, 2012, 4, 1084-1087.	3.7	52
21	Effect of calcination temperature of Ni/SiO2-ZrO2 catalyst on its hydrodeoxygenation of guaiacol. Chinese Journal of Catalysis, 2014, 35, 302-309.	14.0	51
22	A Kinetic Study on Biomass Fast Catalytic Pyrolysis. Energy & Fuels, 2004, 18, 1865-1869.	5.1	50
23	<i>In situ</i> hydrogenation of furfural with additives over a RANEY® Ni catalyst. RSC Advances, 2015, 5, 91190-91195.	3.6	48
24	Hydrogenation of lignin-derived phenolic compounds over step by step precipitated Ni/SiO ₂ . RSC Advances, 2016, 6, 5214-5222.	3.6	46
25	Active and regioselective rhodium catalyst supported on reduced graphene oxide for 1-hexene hydroformylation. Catalysis Science and Technology, 2016, 6, 1162-1172.	4.1	45
26	Interplay of Lewis and BrÃ,nsted Acid Sites in Zr-Based Metal–Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid. ACS Applied Materials & Interfaces, 2019, 11, 32090-32096.	8.0	44
27	High yield of renewable hexanes by direct hydrolysis–hydrodeoxygenation of cellulose in an aqueous phase catalytic system. RSC Advances, 2015, 5, 11649-11657.	3.6	38
28	Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation. Science of the Total Environment, 2018, 631-632, 1611-1622.	8.0	38
29	Effects of current upon hydrogen production from electrochemical catalytic reforming of acetic acid. International Journal of Hydrogen Energy, 2009, 34, 1760-1770.	7.1	37
30	A sol–gel auto-combustion method to prepare Cu/ZnO catalysts for low-temperature methanol synthesis. Catalysis Science and Technology, 2012, 2, 2569.	4.1	37
31	Efficient Hydrogenolysis of Guaiacol over Highly Dispersed Ni/MCM-41 Catalyst Combined with HZSM-5. Catalysts, 2016, 6, 134.	3.5	37
32	High-efficient preparation of gasoline-ranged C5–C6 alkanes from biomass-derived sugar polyols of sorbitol over Ru-MoO3â^'x/C catalyst. Fuel Processing Technology, 2019, 183, 19-26.	7.2	37
33	Synthesis of shape-controllable cobalt nanoparticles and their shape-dependent performance in glycerol hydrogenolysis. RSC Advances, 2015, 5, 4861-4871.	3.6	36
34	Compressible, Fatigue Resistant, and Pressure-Sensitive Carbon Aerogels Developed with a Facile Method for Sensors and Electrodes. ACS Sustainable Chemistry and Engineering, 2019, 7, 12726-12733.	6.7	35
35	Production of C ₅ /C ₆ Sugar Alcohols by Hydrolytic Hydrogenation of Raw Lignocellulosic Biomass over Zr Based Solid Acids Combined with Ru/C. ACS Sustainable Chemistry and Engineering, 2017, 5, 5940-5950.	6.7	34
36	Influence of Transition Metal on the Hydrogen Evolution Reaction over Nano-Molybdenum-Carbide Catalyst. Catalysts, 2018, 8, 294.	3.5	33

#	Article	IF	CITATIONS
37	Selective production of green light olefins by catalytic conversion of bioâ€oil with Mg/HZSMâ€5 catalyst. Journal of Chemical Technology and Biotechnology, 2013, 88, 109-118.	3.2	32
38	Synergistic Effect of EtOAc/H ₂ O Biphasic Solvent and Ru/C Catalyst for Cornstalk Hydrolysis Residue Depolymerization. ACS Sustainable Chemistry and Engineering, 2017, 5, 2981-2993.	6.7	31
39	One-Pot Degradation of Cellulose into Furfural Compounds in Hot Compressed Steam with Dihydric Phosphates. ACS Sustainable Chemistry and Engineering, 2014, 2, 637-642.	6.7	30
40	Simply packaging Ni nanoparticles inside SBA-15 channels by co-impregnation for dry reforming of methane. RSC Advances, 2017, 7, 24551-24560.	3.6	24
41	Preparation and interaction mechanism of Nano disperse dye using hydroxypropyl sulfonated lignin. International Journal of Biological Macromolecules, 2020, 152, 280-287.	7.5	24
42	Hydrogenolysis process for lignosulfonate depolymerization using synergistic catalysts of noble metal and metal chloride. RSC Advances, 2016, 6, 88788-88796.	3.6	22
43	Ring Opening of Cyclic Ether for Selective Synthesis of Renewable 1,5-Pentanediol over Pt/WO ₃ @SiO ₂ Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 9372-9381.	3.7	22
44	Direct degradation of cellulose to 5-hydroxymethylfurfural in hot compressed steam with inorganic acidic salts. RSC Advances, 2014, 4, 4978.	3.6	21
45	Consequence of replacing nitrogen with carbon dioxide as atmosphere on suppressing the formation of polycyclic aromatic hydrocarbons in catalytic pyrolysis of sawdust. Bioresource Technology, 2020, 297, 122417.	9.6	20
46	Fractioned Preparation of Bio-Oil by Biomass Vacuum Pyrolysis. International Journal of Green Energy, 2010, 7, 263-272.	3.8	19
47	Preparation of a Low Reducing Effect Sulfonated Alkali Lignin and Application as Dye Dispersant. Polymers, 2018, 10, 982.	4.5	18
48	Direct conversion of cellulose into C ₆ alditols over Ru/C combined with H ⁺ -released boron phosphate in an aqueous phase. RSC Advances, 2014, 4, 52402-52409.	3.6	17
49	Effect of the temperature on the dissolution of corn straw in ethanol solution. RSC Advances, 2016, 6, 102306-102314.	3.6	17
50	A high-density nickel–cobalt alloy embedded in nitrogen-doped carbon nanosheets for the hydrogen evolution reaction. Nanoscale, 2022, 14, 6202-6211.	5.6	17
51	Hydrodeoxygenation of Sorbitol into Bioâ€Alkanes and â€Alcohols Over Phosphated Ruthenium Molybdenum Catalysts. ChemCatChem, 2018, 10, 5032-5038.	3.7	16
52	Phase-transition engineering induced lattice contraction of the molybdenum carbide surface for highly efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 11414-11425.	10.3	16
53	Selective Hydrogenation of Naphthalene to Decalin Over Surfaceâ€Engineered αâ€MoC Based on Synergy between Pd Doping and Mo Vacancy Generation. Advanced Functional Materials, 2022, 32, .	14.9	15
54	An integrated biomass-derived syngas/dimethyl ether process. Korean Journal of Chemical Engineering, 2007, 24, 181-185.	2.7	14

#	Article	IF	CITATIONS
55	Aqueousâ€Phase Hydrodeoxygenation of Biomass Sugar Alcohol into Renewable Alkanes over a Carbon‧upported Ruthenium with Phosphoric Acid Catalytic System. ChemCatChem, 2017, 9, 774-781.	3.7	13
56	One-pot synthesis of carbon-coated Fe ₃ O ₄ nanoparticles with tunable size for production of gasoline fuels. New Journal of Chemistry, 2018, 42, 10861-10867.	2.8	13
57	Green Synthesis of Highly Dispersed Ni/SiO ₂ Catalysts Using Natural Biomass of Sesbania Powder. Industrial & Engineering Chemistry Research, 2020, 59, 17399-17407.	3.7	12
58	Chitosan–lignin carbon framework-encapsulated Cu catalyst facilitates base-free hydrogen evolution from methanol/water. Catalysis Science and Technology, 2022, 12, 1941-1949.	4.1	12
59	High performance Pd catalyst using silica modified titanate nanotubes (STNT) as support and its catalysis toward hydrogenation of cinnamaldehyde at ambient temperature. RSC Advances, 2014, 4, 63062-63069.	3.6	11
60	Efficient synthesis of biofuel precursor with long carbon chains from fructose. RSC Advances, 2015, 5, 58784-58789.	3.6	11
61	Effect of Ru Particle Size on Hydrogenation/Decarbonylation of Propanoic Acid Over Supported Ru Catalysts in Aqueous Phase. Catalysis Letters, 2017, 147, 29-38.	2.6	11
62	Controlling Transformation of Sorbitol into 1-Hexanol over Ru-MoO <i>_x</i> /Mo ₂ C Catalyst via Aqueous-Phase Hydrodeoxygenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 9033-9044.	6.7	10
63	Facile fabrication of porous Fe@C nanohybrids from natural magnetite as excellent Fischer–Tropsch catalysts. Chemical Communications, 2020, 56, 4523-4526.	4.1	9
64	Upgrading of Aqueous Bioethanol to Higher Alcohols over NiSn/MgAlO Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 11269-11279.	6.7	8
65	Aqueous Phase Catalytic Conversion of Ethanol to Higher Alcohols over NiSn Bimetallic Catalysts Encapsulated in Nitrogen-Doped Biorefinery Lignin-Based Carbon. Industrial & Engineering Chemistry Research, 2021, 60, 17959-17969.	3.7	7
66	Highly activated Ag-doped Fe-based catalysts designed for Fischer–Tropsch synthesis. RSC Advances, 2015, 5, 45426-45430.	3.6	6
67	Comparison of titania nanotube-supported cobalt catalysts prepared by impregnation and homogeneous precipitation for Fischer–Tropsch synthesis. RSC Advances, 2016, 6, 89770-89775.	3.6	6
68	Influence of Impregnation Processes on Ruthenium–Molybdenum Carbon Catalysts for Selective Hydrodeoxygenation of Biomassâ€Đerived Sorbitol into Renewable Alkanes. Energy Technology, 2018, 6, 1763-1770.	3.8	6
69	Effects of Ag on morphology and catalytic performance of iron catalysts for Fischer–Tropsch synthesis. RSC Advances, 2015, 5, 58727-58733.	3.6	5
70	Preparation of hierarchical porous-structured Fe ₃ O ₄ microspheres for Fischer–Tropsch synthesis. New Journal of Chemistry, 2015, 39, 8928-8932.	2.8	5
71	Intensification effect of peroxide hydrogen on the complete dissolution of lignocellulose under mild conditions. RSC Advances, 2016, 6, 41032-41039.	3.6	5
72	Catalytic conversion of biomass-derived sorbitol to aromatic compounds. International Journal of Green Energy, 2016, 13, 767-773.	3.8	4

#	Article	IF	CITATIONS
73	Biomass to dimethyl ether by gasification/synthesis technology-an alternative biofuel production route. Frontiers of Energy and Power Engineering in China, 2010, 5, 330.	0.4	3
74	Nitrate Combustion Methods to Prepare Highly Active Cu/ZnO Catalysts for Low-Temperature Methanol Synthesis: Comparative Behaviors of Citric Acid in Air or Argon Atmosphere. Bulletin of the Chemical Society of Japan, 2013, 86, 1202-1209.	3.2	3
75	Shape Control Synthesis of CuPt Alloys with Enhanced Hydrogen Evolution Reaction and Methanol Oxidation Reaction Activities. ChemNanoMat, 2021, 7, 1200.	2.8	2
76	Visual and Phonological Feature Enhanced Siamese BERT for Chinese Spelling Error Correction. Applied Sciences (Switzerland), 2022, 12, 4578.	2.5	0
77	Direct Construction of K-Fe3C@C Nanohybrids Utilizing Waste Biomass of Pomelo Peel as High-Performance Fischer–Tropsch Catalysts. Catalysts, 2022, 12, 542.	3.5	Ο