
Barbara F Hales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3224172/publications.pdf Version: 2024-02-01

RADRADA F HALES

#	Article	IF	CITATIONS
1	Phthalates and alternative plasticizers differentially affect phenotypic parameters in gonadal somatic and germ cell lines. Biology of Reproduction, 2022, 106, 613-627.	2.7	10
2	The Effects of Organophosphate Esters Used as Flame Retardants and Plasticizers on Granulosa, Leydig, and Spermatogonial Cells Analyzed Using High-Content Imaging. Toxicological Sciences, 2022, 186, 269-287.	3.1	12
3	High-content imaging analyses of the effects of bisphenols and organophosphate esters on TM4 mouse Sertoli cells. Biology of Reproduction, 2022, 107, 858-868.	2.7	3
4	Exposure of men living in the greater Montreal area to organophosphate esters: Association with hormonal balance and semen quality. Environment International, 2022, 166, 107402.	10.0	18
5	<i>In Utero</i> and Lactational Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Induces a Premature Development of the Mammary Glands. Toxicological Sciences, 2021, 179, 206-219.	3.1	7
6	Polybrominated Diphenyl Ethers in Human Follicular Fluid Dysregulate Mural and Cumulus Granulosa Cell Gene Expression. Endocrinology, 2021, 162, .	2.8	10
7	Effects of flame retardants on ovarian function. Reproductive Toxicology, 2021, 102, 10-23.	2.9	13
8	Elucidation of the Effects of Bisphenol A and Structural Analogs on Germ and Steroidogenic Cells Using Single Cell High-Content Imaging. Toxicological Sciences, 2021, 180, 224-238.	3.1	13
9	Effects of an Environmentally Relevant Mixture of Organophosphate Esters Derived From House Dust on Endochondral Ossification in Murine Limb Bud Cultures. Toxicological Sciences, 2021, 180, 62-75.	3.1	7
10	Daphne Trasler: In memoriam. Birth Defects Research, 2021, 113, 1427-1430.	1.5	0
11	Effects of Bisphenols A, AF, and S on Endochondral Ossification and the Transcriptome of Murine Limb Buds. Toxicological Sciences, 2021, , .	3.1	3
12	Exposure to <i>tert</i> -Butylphenyl Diphenyl Phosphate, an Organophosphate Ester Flame Retardant and Plasticizer, Alters Hedgehog Signaling in Murine Limb Bud Cultures. Toxicological Sciences, 2020, 178, 251-263.	3.1	5
13	Effects of brominated and organophosphate ester flame retardants on male reproduction. Andrology, 2020, 8, 915-923.	3.5	40
14	In Utero and Lactational Exposure to Flame Retardants Disrupts Rat Ovarian Follicular Development and Advances Puberty. Toxicological Sciences, 2020, 175, 197-209.	3.1	19
15	Gestational and Lactational Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Downregulates Junctional Proteins, Thyroid Hormone Receptor α1 Expression, and the Proliferation-Apoptosis Balance in Mammary Glands Post Puberty. Toxicological Sciences, 2019, 171, 13-31.	3.1	8
16	The Murine Limb Bud in Culture as an In Vitro Teratogenicity Test System. Methods in Molecular Biology, 2019, 1965, 73-91.	0.9	5
17	Effects of Organophosphate Ester Flame Retardants on Endochondral Ossification in Ex Vivo Murine Limb Bud Cultures. Toxicological Sciences, 2019, 168, 420-429.	3.1	16
18	The Roles of P53 and Its Family Proteins, P63 and P73, in the DNA Damage Stress Response in Organogenesis-Stage Mouse Embryos. Toxicological Sciences, 2018, 162, 439-449.	3.1	9

#	Article	IF	CITATIONS
19	Response to Letter From Rainer Otter Regarding Albert O. <i>et al.</i> (2017). Identifying Greener and Safer Plasticizers: A Four-Step Approach. Toxicological Sciences, 2018, 166, 244-245.	3.1	2
20	Identifying Greener and Safer Plasticizers: A 4-Step Approach. Toxicological Sciences, 2018, 161, 266-275.	3.1	19
21	Polybrominated diphenyl ether (PBDE) neurotoxicity: a systematic review and meta-analysis of animal evidence. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2018, 21, 269-289.	6.5	49
22	Systematic reviews and meta-analyses of human and animal evidence of prenatal diethylhexyl phthalate exposure and changes in male anogenital distance. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2018, 21, 207-226.	6.5	43
23	Effects of In Utero and Lactational Exposure to New Generation Green Plasticizers on Adult Male Rats: A Comparative Study With Di(2-Ethylhexyl) Phthalate. Toxicological Sciences, 2018, 164, 129-141.	3.1	23
24	Exposure to polybrominated diphenyl ethers and phthalates in healthy men living in the greater Montreal area: A study of hormonal balance and semen quality. Environment International, 2018, 116, 165-175.	10.0	53
25	Hydroxyurea embryotoxicity is enhanced in P53-deficient mice. Reproductive Toxicology, 2018, 81, 28-33.	2.9	4
26	A case study of the role of toxicogenomics in hazard identification: The effects of exposure to a mixture of brominated flame retardants on ovarian function and gene expression. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY77-1.	0.0	0
27	Gestational and Lactational Exposure to an Environmentallyâ€Relevant Mixture of Brominated Flame Retardants: Effects on Neurodevelopment and Metabolism. Birth Defects Research, 2017, 109, 497-512.	1.5	19
28	From the Cover: Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Decreased p-β-Cateninser675 Expression and Its Interaction With E-Cadherin in the Mammary Glands of Lactating Rats. Toxicological Sciences, 2017, 159, 114-123.	3.1	10
29	In Utero and Lactational Exposure Study in Rats to Identify Replacements for Di(2-ethylhexyl) Phthalate. Scientific Reports, 2017, 7, 3862.	3.3	34
30	A Case–Control Study of Maternal Polybrominated Diphenyl Ether (PBDE) Exposure and Cryptorchidism in Canadian Populations. Environmental Health Perspectives, 2017, 125, 057004.	6.0	48
31	Response to Dr. Wise. Birth Defects Research Part A: Clinical and Molecular Teratology, 2016, 106, 1059-1061.	1.6	Ο
32	Editor's Highlight: Hydroxyurea Exposure Activates the P53 Signaling Pathway in Murine Organogenesis-Stage Embryos. Toxicological Sciences, 2016, 152, 297-308.	3.1	13
33	Gestational and Early Postnatal Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants: General Toxicity and Skeletal Variations. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2016, 107, 157-168.	1.4	28
34	In utero exposure to venlafaxine, a serotonin–norepinephrine reuptake inhibitor, increases cardiac anomalies and alters placental and heart serotonin signaling in the rat. Birth Defects Research Part A: Clinical and Molecular Teratology, 2016, 106, 1044-1055.	1.6	24
35	Implications of Applying Minimal Risk Standards in Clinical Research to Information Provision in Prenatal and Pre-conception Care. Journal of Obstetrics and Gynaecology Canada, 2016, 38, 965-974.	0.7	0
36	Zinc Transport Differs in Rat Spermatogenic Cell Types and Is Affected by Treatment with Cyclophosphamide. Biology of Reproduction, 2016, 95, 22-22.	2.7	5

#	Article	IF	CITATIONS
37	Organophosphate Flame Retardants Act as Endocrine-Disrupting Chemicals in MA-10 Mouse Tumor Leydig Cells. Toxicological Sciences, 2016, 150, 499-509.	3.1	64
38	Exposure of Female Rats to an Environmentally Relevant Mixture of Brominated Flame Retardants Targets the Ovary, Affecting Folliculogenesis and Steroidogenesis1. Biology of Reproduction, 2016, 94, 9.	2.7	33
39	The Effects of Chemotherapeutic Agents, Bleomycin, Etoposide, and Cisplatin, on Chromatin Remodeling in Male Rat Germ Cells1. Biology of Reproduction, 2016, 94, 81.	2.7	26
40	A Mixture Reflecting Polybrominated Diphenyl Ether (PBDE) Profiles Detected in Human Follicular Fluid Significantly Affects Steroidogenesis and Induces Oxidative Stress in a Female Human Granulosa Cell Line. Endocrinology, 2016, 157, 2698-2711.	2.8	31
41	Valproic Acid Induces the Hyperacetylation of P53, Expression of P53 Target Genes, and Markers of the Intrinsic Apoptotic Pathway in Midorganogenesis Murine Limbs. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2015, 104, 177-183.	1.4	14
42	The Effects of Class-Specific Histone Deacetylase Inhibitors on the Development of Limbs During Organogenesis. Toxicological Sciences, 2015, 148, 220-228.	3.1	19
43	Assessment of the developmental toxicity of nanoparticles in an <i>ex vivo</i> 3D model, the murine limb bud culture system. Nanotoxicology, 2015, 9, 780-791.	3.0	2
44	Hair as a Biomarker of Systemic Exposure to Polybrominated Diphenyl Ethers. Environmental Science & Technology, 2014, 48, 14650-14658.	10.0	49
45	Effects of Ethylene Clycol Monomethyl Ether and Its Metabolite, 2â€Methoxyacetic Acid, on Organogenesis Stage Mouse Limbs In Vitro. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2014, 101, 254-261.	1.4	8
46	Exposure to an environmentally relevant mixture of brominated flame retardants affects fetal development in Sprague-Dawley rats. Toxicology, 2014, 320, 56-66.	4.2	32
47	Harnessing genomics to identify environmental determinants of heritable disease. Mutation Research - Reviews in Mutation Research, 2013, 752, 6-9.	5.5	25
48	Glyceryl trinitrate metabolism in the quail embryo by the glutathione S-transferases leads to a perturbation in redox status and embryotoxicity. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2013, 165, 153-164.	1.6	1
49	Selective induction of glutathione S-transferases in round spermatids from the Brown-Norway rat by the chemotherapeutic regimen for testicular cancer. Reproductive Toxicology, 2013, 36, 24-32.	2.9	2
50	Hydroxyurea Exposure Triggers Tissue-Specific Activation of p38 Mitogen-Activated Protein Kinase Signaling and the DNA Damage Response in Organogenesis-Stage Mouse Embryos. Toxicological Sciences, 2013, 133, 298-308.	3.1	15
51	The development of adverse outcome pathways for mutagenic effects for the organization for economic coâ€operation and development. Environmental and Molecular Mutagenesis, 2013, 54, 79-81.	2.2	17
52	Deprenyl Enhances the Teratogenicity of Hydroxyurea in Organogenesis Stage Mouse Embryos. Toxicological Sciences, 2013, 134, 391-399.	3.1	16
53	Exposure to Valproic Acid Inhibits Chondrogenesis and Osteogenesis in Mid-Organogenesis Mouse Limbs. Toxicological Sciences, 2013, 131, 234-241.	3.1	17
54	Analysis of the Sperm Head Protein Profiles in Fertile Men: Consistency across Time in the Levels of Expression of Heat Shock Proteins and Peroxiredoxins. PLoS ONE, 2013, 8, e77471.	2.5	12

#	Article	IF	CITATIONS
55	Effects of Chronic Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants on the Reproductive and Thyroid System in Adult Male Rats. Toxicological Sciences, 2012, 127, 496-507.	3.1	60
56	Sperm Chromatin Structure Components Are Differentially Repaired in Cancer Survivors. Journal of Andrology, 2012, 33, 629-636.	2.0	34
57	The Activation of DNA Damage Detection and Repair Responses in Cleavage-Stage Rat Embryos by a Damaged Paternal Genome. Toxicological Sciences, 2012, 127, 555-566.	3.1	22
58	Effects of Exposure to a DNA Damaging Agent on the Hypoxia Inducible Factors in Organogenesis Stage Mouse Limbs. PLoS ONE, 2012, 7, e51937.	2.5	2
59	The Murine Limb Bud in Culture as an In Vitro Teratogenicity Test System. Methods in Molecular Biology, 2012, 889, 197-213.	0.9	8
60	Effects of Chemotherapeutic Agents for Testicular Cancer on Rat Spermatogonial Stem/Progenitor Cells. Journal of Andrology, 2011, 32, 432-443.	2.0	25
61	Epigenetic programming: From gametes to blastocyst. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 652-665.	1.6	77
62	Developmental toxicity of glyceryl trinitrate in quail embryos. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 230-240.	1.6	4
63	Paternal Cyclophosphamide Exposure Induces the Formation of Functional Micronuclei during the First Zygotic Division. PLoS ONE, 2011, 6, e27600.	2.5	8
64	Paternally-mediated effects on development. , 2011, , 76-92.		0
65	Toxicants and human sperm chromatin integrity. Molecular Human Reproduction, 2010, 16, 14-22.	2.8	100
66	Reversibility of the effects of the chemotherapeutic regimen for non-Hodgkin lymphoma, cyclophosphamide, doxorubicin, vincristine, and prednisone, on the male rat reproductive system and progeny outcome. Reproductive Toxicology, 2010, 29, 332-338.	2.9	19
67	Paternal Exposure to Cyclophosphamide Affects the Progression of Sperm Chromatin Decondensation and Activates a DNA Damage Response in the Prepronuclear Rat Zygote1. Biology of Reproduction, 2010, 83, 195-204.	2.7	25
68	Teratogen-Induced Oxidative Stress Targets Glyceraldehyde-3-Phosphate Dehydrogenase in the Organogenesis Stage Mouse Embryo. Toxicological Sciences, 2010, 118, 686-695.	3.1	15
69	Impact of chemotherapeutics and advanced testicular cancer or Hodgkin lymphoma on sperm deoxyribonucleic acid integrity. Fertility and Sterility, 2010, 94, 1374-1379.	1.0	87
70	Impact of the Chemotherapy Cocktail Used to Treat Testicular Cancer on the Gene Expression Profile of Germ Cells from Male Brown-Norway Rats1. Biology of Reproduction, 2009, 80, 320-327.	2.7	31
71	Teratogen responsive signaling pathways in organogenesis stage mouse limbs. Reproductive Toxicology, 2009, 27, 103-110.	2.9	7
72	The oxidative stress response is region specific in organogenesis stage mouse embryos exposed to 5â€bromoâ€2′â€deoxyuridine. Birth Defects Research Part A: Clinical and Molecular Teratology, 2009, 85, 202-210.	1.6	1

#	Article	IF	CITATIONS
73	The impact of human superoxide dismutase 1 expression in a mouse model on the embryotoxicity of hydroxyurea. Birth Defects Research Part A: Clinical and Molecular Teratology, 2009, 85, 800-807.	1.6	9
74	Reversibility of the Effects of Subchronic Exposure to the Cancer Chemotherapeutics Bleomycin, Etoposide, and Cisplatin on Spermatogenesis, Fertility, and Progeny Outcome in the Male Rat. Journal of Andrology, 2008, 29, 408-417.	2.0	45
75	p38 and c-Jun N-Terminal Kinase Mitogen-Activated Protein Kinase Signaling Pathways Play Distinct Roles in the Response of Organogenesis-Stage Embryos to a Teratogen. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 764-772.	2.5	12
76	Retinoic Acid Receptor Gamma-Induced Misregulation of Chondrogenesis in the Murine Limb Bud In Vitro. Toxicological Sciences, 2008, 106, 223-232.	3.1	18
77	DNA Damage Recognition in the Rat Zygote Following Chronic Paternal Cyclophosphamide Exposure. Toxicological Sciences, 2007, 100, 495-503.	3.1	44
78	Chronic Cyclophosphamide Exposure Alters the Profile of Rat Sperm Nuclear Matrix Proteins1. Biology of Reproduction, 2007, 77, 303-311.	2.7	43
79	Effects of the Chemotherapeutic Agents for Non-Hodgkin Lymphoma, Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone (CHOP), on the Male Rat Reproductive System and Progeny Outcome. Journal of Andrology, 2007, 28, 578-587.	2.0	42
80	In utero exposure to tributyltin chloride differentially alters male and female fetal gonad morphology and gene expression profiles in the Sprague–Dawley rat. Reproductive Toxicology, 2007, 23, 1-11.	2.9	45
81	Effects of the Chemotherapy Cocktail Used to Treat Testicular Cancer on Sperm Chromatin Integrity. Journal of Andrology, 2006, 28, 241-249.	2.0	78
82	Effects of Chemotherapeutic Agents for Testicular Cancer on the Male Rat Reproductive System, Spermatozoa, and Fertility. Journal of Andrology, 2006, 27, 189-200.	2.0	81
83	Role of retinoic acid receptors α1 and γ in the response of murine limbs to retinol in vitro. Birth Defects Research Part A: Clinical and Molecular Teratology, 2006, 76, 39-45.	1.6	6
84	Exposure to 5-Bromo-2′-deoxyuridine induces oxidative stress and activator protein-1 DNA binding activity in the embryo. Birth Defects Research Part A: Clinical and Molecular Teratology, 2006, 76, 580-591.	1.6	20
85	Retinoid Receptor Antagonists Alter the Pattern of Apoptosis in Organogenesis Stage Mouse Limbs. Toxicological Sciences, 2006, 90, 208-220.	3.1	10
86	Novel Retinoid Targets in the Mouse Limb during Organogenesis. Toxicological Sciences, 2006, 94, 139-152.	3.1	12
87	Depletion of Glutathione Induces 4-Hydroxynonenal Protein Adducts and Hydroxyurea Teratogenicity in the Organogenesis Stage Mouse Embryo. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 613-621.	2.5	36
88	The stress response in gametes and embryos after paternal chemical exposures. Toxicology and Applied Pharmacology, 2005, 207, 514-520.	2.8	32
89	Impact of Paternal Exposure to Chemotherapy on Offspring in the Rat. Journal of the National Cancer Institute Monographs, 2005, 2005, 28-31.	2.1	49
90	Effects of Acute and Chronic Cyclophosphamide Treatment on Meiotic Progression and the Induction of DNA Double-Strand Breaks in Rat Spermatocytes1. Biology of Reproduction, 2005, 72, 1297-1304.	2.7	35

#	Article	IF	CITATIONS
91	Epigenetic programming in the preimplantation rat embryo is disrupted by chronic paternal cyclophosphamide exposure. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7865-7870.	7.1	73
92	Activator Protein-1 (AP-1) DNA Binding Activity Is Induced by Hydroxyurea in Organogenesis Stage Mouse Embryos. Toxicological Sciences, 2005, 85, 1013-1023.	3.1	32
93	DNA repair disorders causing malformations. Current Opinion in Genetics and Development, 2005, 15, 234-240.	3.3	27
94	Spermiogenic Germ Cell Phase—Specific DNA Damage Following Cyclophosphamide Exposure. Journal of Andrology, 2004, 25, 354-362.	2.0	97
95	Caspase-3 mediates retinoid-induced apoptosis in the organogenesis-stage mouse limb. Birth Defects Research Part A: Clinical and Molecular Teratology, 2003, 67, 848-860.	1.6	23
96	Numerical Chromosomal Abnormalities in Rat Epididymal Spermatozoa Following Chronic Cyclophosphamide Exposure. Biology of Reproduction, 2003, 69, 1150-1157.	2.7	31
97	Effects of in Utero Tributyltin Chloride Exposure in the Rat on Pregnancy Outcome. Toxicological Sciences, 2003, 74, 407-415.	3.1	106
98	Genotoxic Stress Response Gene Expression in the Mid-Organogenesis Rat Conceptus. Toxicological Sciences, 2003, 74, 157-164.	3.1	14
99	Gestational Exposure to Persistent Organic Pollutants: Maternal Liver Residues, Pregnancy Outcome, and Effects on Hepatic Gene Expression Profiles in the Dam and Fetus. Toxicological Sciences, 2003, 72, 242-252.	3.1	15
100	Chronic Cyclophosphamide Treatment Alters the Expression of Stress Response Genes in Rat Male Germ Cells1. Biology of Reproduction, 2002, 66, 1024-1032.	2.7	44
101	DNA repair during organogenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 509, 79-91.	1.0	64
102	Expression and activity of the DNA repair enzyme uracil DNA glycosylase during organogenesis in the rat conceptus and following methotrexate exposure in vitro. Biochemical Pharmacology, 2002, 64, 711-721.	4.4	12
103	Buthionine sulfoximine embryotoxicity is associated with prolonged AP-1 activation. Teratology, 2002, 66, 192-200.	1.6	10
104	Role of caspases in murine limb bud cell death induced by 4-hydroperoxycyclophosphamide, an activated analog of cyclophosphamide. Teratology, 2002, 66, 288-299.	1.6	30
105	Paternal Exposure to Drugs and Environmental Chemicals: Effects on Progeny Outcome. Journal of Andrology, 2001, 22, 927-936.	2.0	46
106	Nucleotide excision repair gene expression in the rat conceptus during organogenesis. Mutation Research DNA Repair, 2001, 486, 113-123.	3.7	20
107	Expression of base excision, mismatch, and recombination repair genes in the organogenesis-stage rat conceptus and effects of exposure to a genotoxic teratogen, 4-hydroperoxycyclophosphamide. Teratology, 2001, 64, 283-291.	1.6	10
108	Acute cyclophosphamide exposure has germ cell specific effects on the expression of stress response genes during rat spermatogenesis. Molecular Reproduction and Development, 2001, 60, 302-311.	2.0	30

#	Article	IF	CITATIONS
109	Expression of Stress Response Genes in Germ Cells During Spermatogenesis1. Biology of Reproduction, 2001, 65, 119-127.	2.7	76
110	Paternal exposure to cyclophosphamide dysregulates the gene activation program in rat preimplantation embryos. Molecular Reproduction and Development, 2000, 57, 214-223.	2.0	30
111	Paternal Exposure to Cyclophosphamide Alters Cell-Cell Contacts and Activation of Embryonic Transcription in the Preimplantation Rat Embryo1. Biology of Reproduction, 2000, 63, 74-81.	2.7	24
112	Paternal exposure to cyclophosphamide induces DNA damage and alters the expression of DNA repair genes in the rat preimplantation embryo. Mutation Research DNA Repair, 2000, 461, 229-241.	3.7	93
113	Post-Translational Regulation of AP-1 Transcription Factor DNA-Binding Activity in the Rat Conceptus. Molecular Pharmacology, 1999, 56, 537-544.	2.3	15
114	Thalidomide on the comeback trail. Nature Medicine, 1999, 5, 489-490.	30.7	74
115	Tissue-specific regulation of glutathione homeostasis and the activator protein-1 (AP-1) response in the rat conceptus. Biochemical Pharmacology, 1999, 57, 1165-1175.	4.4	14
116	Induction of Apoptosis in the Germ Cells of Adult Male Rats after Exposure to Cyclophosphamide1. Biology of Reproduction, 1997, 56, 1490-1497.	2.7	141
117	Transglutaminase and Clusterin Induction during Normal and Abnormal Limb Development in the Mouse1. Biology of Reproduction, 1996, 55, 281-290.	2.7	15
118	Antisense Oligonucleotide Down-Regulation of E-Cadherin in the Yolk Sac and Cranial Neural Tube Malformations1. Biology of Reproduction, 1995, 53, 1229-1238.	2.7	27
119	Induction of apoptosis and cathepsin D in limbs exposed in vitro to an activated analog of cyclophosphamide. Teratology, 1995, 52, 3-14.	1.6	34
120	Damage to Rat Spermatozoal DNA after Chronic Cyclophosphamide Exposure1. Biology of Reproduction, 1995, 53, 1465-1473.	2.7	69
121	Effects of Chronic Low-Dose Cyclophosphamide Exposure on the Nuclei of Rat Spermatozoa1. Biology of Reproduction, 1995, 52, 33-40.	2.7	53
122	Paternal Cyclophosphamide Exposure Causes Decreased Cell Proliferation in Cleavage-Stage Embryos1. Biology of Reproduction, 1994, 50, 55-64.	2.7	31
123	Role of apoptosis in mediating phosphoramide mustard-induced rat embryo malformations in vitro. Teratology, 1994, 50, 1-12.	1.6	38
124	12-O-tetradecanoyl-phorbol-13-acetate-induced rat embryo malformations in vitro are associated with an increased relative abundance of embryonic E-cadherin mRNA. Teratology, 1994, 50, 302-310.	1.6	2
125	Regulation of the Yp subunit of glutathione S-transferase p in rat embryos and yolk sacs during organogenesis. Biochemical Pharmacology, 1994, 47, 2029-2037.	4.4	15
126	Adverse Effects of Cyclophosphamide on Progeny Outcome can be Mediated Through Post-Testicular Mechanisms in the Rat1. Biology of Reproduction, 1992, 46, 926-931.	2.7	57

#	Article	IF	CITATIONS
127	Paternal cyclophosphamide treatment causes postimplantation loss via inner cell mass-specific cell death. Teratology, 1992, 45, 313-318.	1.6	71
128	Increased postimplantation loss and malformations among the F2 progeny of male rats chronically treated with cyclophosphamide. Teratology, 1992, 45, 671-678.	1.6	113
129	Genetic differences in heat-induced tolerance to cadmium in cultured mouse embryos are not correlated with changes in a 68-kD heat shock protein. Teratology, 1992, 46, 191-200.	1.6	16
130	Heat-shock induced tolerance to the embryotoxic effects of hyperthermia and cadmium in mouse embryos in vitro. Teratology, 1991, 43, 83-94.	1.6	28
131	The effect of in vivo glutathione depletion with buthionine sulfoximine on rat embryo development. Teratology, 1991, 44, 251-257.	1.6	30
132	Cadherin mRNAs during rat embryo development in vivo and in vitro. Teratology, 1991, 44, 581-590.	1.6	24
133	Embryotoxicity of phenyl ketone analogs of cyclophosphamide. Teratology, 1989, 39, 31-37.	1.6	7
134	Effects of phosphoramide mustard and acrolein, cytotoxic metabolites of cyclophosphamide, on mouse limb development in vitro. Teratology, 1989, 40, 11-20.	1.6	16
135	Role of the 4-hydroxy intermediate in the in vitro embryotoxicity of cyclophosphamide and dechlorocyclophosphamide. Toxicology and Applied Pharmacology, 1988, 92, 170-178.	2.8	16
136	Effect of Estradiol-Filled Polydimethylsiloxane Subdermal Implants in Adult Male Rats on the Reproductive System, Fertility, and Progeny Outcome1. Biology of Reproduction, 1987, 37, 327-334.	2.7	36
137	A Time-Course Study of Chronic Paternal Cyclophosphamide Treatment in Rats: Effects on Pregnancy Outcome and the Male Reproductive and Hematologic Systems1. Biology of Reproduction, 1987, 37, 317-326.	2.7	89
138	Protection of rat embryos in culture against the embryotoxicity of acrolein using exogenous glutathione. Biochemical Pharmacology, 1987, 36, 2187-2194.	4.4	20
139	Enhancement of the embryotoxicity of acrolein, but not phosphoramide mustard, by glutathione depletion in rat embryos in vitro. Biochemical Pharmacology, 1987, 36, 2019-2025.	4.4	49
140	Effect of glutathione depletion by buthionine sulfoximine on rat embryonic development in vitro. Biochemical Pharmacology, 1987, 36, 683-688.	4.4	44
141	Cyclophosphamide in the seminal fluid of treated males: Transmission to females by mating and effect on pregnancy outcome. Toxicology and Applied Pharmacology, 1986, 84, 423-430.	2.8	74
142	Sodium 2-mercaptoethane sulfonate protection against cyclophosphamide-induced teratogenicity in rats. Toxicology and Applied Pharmacology, 1986, 82, 80-86.	2.8	13
143	Differential effects of 4-hydroperoxycyclophosphamide on limb development in vitro. Teratology, 1986, 34, 303-311.	1.6	9
144	Chronic Low Dose Cyclophosphamide Treatment of Adult Male Rats: Effect on Fertility, Pregnancy Outcome and Progeny1. Biology of Reproduction, 1986, 34, 275-283.	2.7	161

#	Article	IF	CITATIONS
145	Paternal cyclophosphamide treatment of rats causes fetal loss and malformations without affecting male fertility. Nature, 1985, 316, 144-146.	27.8	211
146	Teratogenicity and embryolethality of acrolein and structurally related compounds in rats. Teratology, 1985, 32, 65-72.	1.6	47
147	Suppression of Spermatogenesis by Testosterone in Adult Male Rats: Effect on Fertility, Pregnancy Outcome and Progeny 1. Biology of Reproduction, 1984, 31, 221-230.	2.7	63
148	Effect on Pregnancy Outcome of Suppression of Spermatogenesis by Testosterone. Annals of the New York Academy of Sciences, 1984, 438, 546-548.	3.8	0
149	Relative mutagenicity and teratogenicity of cyclophosphamide and two of its structural analogs. Biochemical Pharmacology, 1983, 32, 3791-3795.	4.4	15
150	Differential regulation of male rat liver glutathione S-transferases. Biochemical Pharmacology, 1982, 31, 2389-2393.	4.4	9
151	Rat liver glutathione S-transferase B: The functional mRNAs specific for the Ya Yc subunits are induced differentially by phenobarbital. Archives of Biochemistry and Biophysics, 1982, 215, 539-543.	3.0	41
152	Differential induction of rat hepatic cytochrome P-448 and glutathione S-transferase B messenger RNAS by 3-methylcholanthrene. Biochemical and Biophysical Research Communications, 1982, 104, 611-619.	2.1	60
153	Induction of translationally active rat liver glutathione S-transferase B messenger RNA by phenobarbital. Biochemical and Biophysical Research Communications, 1981, 99, 1002-1010.	2.1	29
154	Modification of the teratogenicity and mutagenicity of cyclophosphamide with thiol compounds. Teratology, 1981, 23, 373-381.	1.6	33
155	The presence and longitudinal distribution of the glutathione S-transferase in rat epididymis and vas deferens. Biochemical Journal, 1980, 189, 135-142.	3.7	47
156	Characteristics of the activation of cyclophosphamide to a mutagen by rat liver. Biochemical Pharmacology, 1980, 29, 256-259.	4.4	33
157	Effects of phenobarbital and β-naphthoflavone on the activation of cyclophosphamide to mutagenic metabolites in vitro by liver and kidney from male and female rats. Biochemical Pharmacology, 1980, 29, 2031-2037.	4.4	27