Karina M M Carneiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3223766/publications.pdf

Version: 2024-02-01

22 papers 1,166 citations

15 h-index 677142 22 g-index

27 all docs

27 docs citations

27 times ranked 1377 citing authors

#	Article	IF	CITATIONS
1	DDR1 associates with TRPV4 in cellâ€matrix adhesions to enable calciumâ€regulated myosin activity and collagen compaction. Journal of Cellular Physiology, 2022, 237, 2451-2468.	4.1	6
2	Peptide-Decorated DNA Nanostructures Promote Site-Specific Hydroxyapatite Growth. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1692-1698.	8.0	7
3	DNA nanostructures as templates for biomineralization. Nature Reviews Chemistry, 2021, 5, 93-108.	30.2	46
4	Hydroxyapatite Growth on Amelogeninâ€Amelotin Recombinamers. ChemNanoMat, 2021, 7, 851-857.	2.8	1
5	Uniaxial Hydroxyapatite Growth on a Self-Assembled Protein Scaffold. International Journal of Molecular Sciences, 2021, 22, 12343.	4.1	3
6	Abstract 13262: Improved Rabbit Model of Calcific Aortic Valve Disease Induces Severe Medial Calcification and Stenosis Equivalent to Human Disease. Circulation, 2021, 144, .	1.6	0
7	Cooperative roles of PAK1 and filamin A in regulation of vimentin assembly and cell extension formation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118739.	4.1	16
8	Functionalized DNA nanostructures as scaffolds for guided mineralization. Chemical Science, 2019, 10, 10537-10542.	7.4	23
9	The role of protease inhibitors on the remineralization of demineralized dentin using the PILP method. PLoS ONE, 2017, 12, e0188277.	2.5	13
10	Amyloid-like ribbons of amelogenins in enamel mineralization. Scientific Reports, 2016, 6, 23105.	3.3	73
11	Repair of dentin defects from DSPP knockout mice by PILP mineralization. Journal of Materials Research, 2016, 31, 321-327.	2.6	23
12	Titelbild: An Efficient and Modular Route to Sequence-Defined Polymers Appended to DNA (Angew.) Tj ETQq0 0	0 rgBT /Ον	erlock 10 Tf 5
13	An Efficient and Modular Route to Sequenceâ€Defined Polymers Appended to DNA. Angewandte Chemie - International Edition, 2014, 53, 4567-4571.	13.8	127
14	Precision Polymers and 3D DNA Nanostructures: Emergent Assemblies from New Parameter Space. Journal of the American Chemical Society, 2014, 136, 15767-15774.	13.7	94
15	Sequence-responsive unzipping DNA cubes with tunable cellular uptake profiles. Chemical Science, 2014, 5, 2449-2455.	7.4	67
16	Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly. Nature Chemistry, 2013, 5, 868-875.	13.6	192
17	Simple Design for DNA Nanotubes from a Minimal Set of Unmodified Strands: Rapid, Room-Temperature Assembly and Readily Tunable Structure. ACS Nano, 2013, 7, 3022-3028.	14.6	48
18	Longâ€range assembly of DNA into nanofibers and highly ordered networks. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 266-285.	6.1	16

#	Article	IF	CITATIONS
19	Three-Dimensional Organization of Block Copolymers on "DNA-Minimal―Scaffolds. Journal of the American Chemical Society, 2012, 134, 4280-4286.	13.7	78
20	Stimuli-responsive organization of block copolymers on DNA nanotubes. Chemical Science, 2012, 3, 1980.	7.4	55
21	Rolling Circle Amplification-Templated DNA Nanotubes Show Increased Stability and Cell Penetration Ability. Journal of the American Chemical Society, 2012, 134, 2888-2891.	13.7	187
22	Long-Range Assembly of DNA into Nanofibers and Highly Ordered Networks Using a Block Copolymer Approach. Journal of the American Chemical Society, 2010, 132, 679-685.	13.7	70