
Narelle Fegan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3223723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Science, 2020, 162, 108025.	2.7	217
2	<i>Stenotrophomonas</i> and <i>Lysobacter</i> : ubiquitous plantâ€associated <i>gammaâ€</i> proteobacteria of developing significance in applied microbiology. Journal of Applied Microbiology, 2010, 108, 756-770.	1.4	169
3	Attachment of different Salmonella serovars to materials commonly used in a poultry processing plant. Food Microbiology, 2009, 26, 853-859.	2.1	128
4	A PCR Specific for <i>Escherichia coli</i> O157 Based on the <i>rfb</i> Locus Encoding O157 Lipopolysaccharide. Journal of Clinical Microbiology, 1998, 36, 1801-1804.	1.8	115
5	Isolation and characterisation of Arcobacter butzleri from meat. International Journal of Food Microbiology, 2004, 91, 31-41.	2.1	100
6	The prevalence and concentration of Escherichia coli O157 in faeces of cattle from different production systems at slaughter. Journal of Applied Microbiology, 2004, 97, 362-370.	1.4	96
7	Ancestral Divergence, Genome Diversification, and Phylogeographic Variation in Subpopulations of Sorbitol-Negative, β-Glucuronidase-Negative Enterohemorrhagic Escherichia coli O157. Journal of Bacteriology, 2001, 183, 6885-6897.	1.0	88
8	Prevalence and characterization of foodborne pathogens from Australian dairy farm environments. Journal of Dairy Science, 2014, 97, 7402-7412.	1.4	87
9	Distribution, prevalence and persistence of Cronobacter (Enterobacter sakazakii) in the nonprocessing and processing environments of five milk powder factories. Journal of Applied Microbiology, 2010, 109, 1044-1052.	1.4	69
10	Characterization of Staphylococcus aureus isolates from raw milk sources in Victoria, Australia. BMC Microbiology, 2016, 16, 169.	1.3	66
11	Phenotypic characterisation of Pasteurella multocida isolates from Australian poultry. Veterinary Microbiology, 1995, 47, 281-286.	0.8	65
12	Population structure and diversity of avian isolates of Pasteurella multocida from Australia. Microbiology (United Kingdom), 1998, 144, 279-289.	0.7	61
13	Insight into the Genome of Brochothrix thermosphacta, a Problematic Meat Spoilage Bacterium. Applied and Environmental Microbiology, 2017, 83, .	1.4	61
14	Genomic and metabolic characterization of spoilage-associated Pseudomonas species. International Journal of Food Microbiology, 2018, 268, 61-72.	2.1	58
15	Quantification of acid–base interactions based on contact angle measurement allows XDLVO predictions to attachment of Campylobacter jejuni but not Salmonella. Journal of Microbiological Methods, 2011, 86, 89-96.	0.7	57
16	Enumeration of Escherichia coli O157 in cattle faeces using most probable number technique and automated immunomagnetic separation. Letters in Applied Microbiology, 2004, 38, 56-59.	1.0	56
17	Prevalence and Antimicrobial Resistance of Salmonella and Escherichia coli from Australian Cattle Populations at Slaughter. Journal of Food Protection, 2015, 78, 912-920.	0.8	53
18	Quantitative effects of in-line operations on Campylobacter and Escherichia coli through two Australian broiler processing plants. International Journal of Food Microbiology, 2014, 188, 128-134.	2.1	52

#	Article	IF	CITATIONS
19	An Investigation of Escherichia coli O157 Contamination of Cattle during Slaughter at an Abattoir. Journal of Food Protection, 2005, 68, 451-457.	0.8	51
20	Attachment of Shiga toxigenic Escherichia coli to stainless steel. International Journal of Food Microbiology, 2007, 115, 89-94.	2.1	51
21	Multilocus Genotype Analysis of Escherichia coli O157 Isolates from Australia and the United States Provides Evidence of Geographic Divergence. Applied and Environmental Microbiology, 2013, 79, 5050-5058.	1.4	50
22	Quantification and prevalence of Salmonella in beef cattle presenting at slaughter. Journal of Applied Microbiology, 2004, 97, 892-898.	1.4	49
23	Shiga toxinâ€producingEscherichia coliin sheep and preâ€slaughter lambs in eastern Australia. Letters in Applied Microbiology, 1999, 28, 335-339.	1.0	47
24	Prevalence and serotypes of <i>Salmonella</i> associated with goats at two Australian abattoirs. Letters in Applied Microbiology, 2009, 48, 193-197.	1.0	45
25	Characterisation of <i>Pasteurella multocida</i> isolated from fowl cholera outbreaks on turkey farms. Australian Veterinary Journal, 1995, 72, 135-138.	0.5	43
26	Emergence and spread of two distinct clonal groups of multidrug-resistant Escherichia coli in a veterinary teaching hospital in Australia. Journal of Medical Microbiology, 2006, 55, 1125-1134.	0.7	42
27	The role of meat in foodborne disease: Is there a coming revolution in risk assessment and management?. Meat Science, 2018, 144, 22-29.	2.7	42
28	Physicochemical properties of Shiga toxigenic Escherichia coli. Journal of Applied Microbiology, 2005, 99, 716-727.	1.4	40
29	Dynamics of Shiga toxin-producing Escherichia coli (STEC) in feedlot cattle. Letters in Applied Microbiology, 1999, 29, 85-89.	1.0	38
30	Stochasticity of Bacterial Attachment and Its Predictability by the Extended Derjaguin-Landau-Verwey-Overbeek Theory. Applied and Environmental Microbiology, 2011, 77, 3757-3764.	1.4	38
31	The molecular epidemiology of four outbreaks of porcine pasteurellosis. Veterinary Microbiology, 2000, 72, 111-120.	0.8	37
32	A Study of the Prevalence and Enumeration of Salmonella enterica in Cattle and on Carcasses during Processing. Journal of Food Protection, 2005, 68, 1147-1153.	0.8	37
33	A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method. Journal of Microbiological Methods, 2007, 69, 44-51.	0.7	36
34	Analysis of the Listeria monocytogenes Population Structure among Isolates from 1931 to 2015 in Australia. Frontiers in Microbiology, 2017, 8, 603.	1.5	35
35	Changes of the bacterial community diversity on chicken carcasses through an Australian poultry processing line. Food Microbiology, 2020, 86, 103350.	2.1	35
36	Review of the impact of pre-slaughter feed curfews of cattle, sheep and goats on food safety and carcase hygiene in Australia. Food Control, 2012, 26, 313-321.	2.8	34

#	Article	IF	CITATIONS
37	Geographically Distinct Escherichia coli O157 Isolates Differ by Lineage, Shiga Toxin Genotype, and Total Shiga Toxin Production. Journal of Clinical Microbiology, 2015, 53, 579-586.	1.8	33
38	National Survey of Shiga Toxin–Producing Escherichia coli Serotypes O26, O45, O103, O111, O121, O145, and O157 in Australian Beef Cattle Feces. Journal of Food Protection, 2016, 79, 1868-1874.	0.8	33
39	Role of Attachment to Surfaces on the Prevalence and Survival of Campylobacter through Food Systems. Journal of Food Protection, 2012, 75, 195-206.	0.8	31
40	The Effects of Transport and Lairage on Counts of <i>Escherichia coli</i> O157 in the Feces and on the Hides of Individual Cattle. Foodborne Pathogens and Disease, 2009, 6, 1113-1120.	0.8	30
41	Characterization of the spore-forming Bacillus cereus sensu lato group and Clostridium perfringens bacteria isolated from the Australian dairy farm environment. BMC Microbiology, 2015, 15, 38.	1.3	30
42	Expression and Putative Roles in Attachment of Outer Membrane Proteins of <i>Escherichia coli</i> O157 from Planktonic and Sessile Culture. Foodborne Pathogens and Disease, 2008, 5, 155-164.	0.8	29
43	Concentration and prevalence of <i>Escherichia coli</i> O157 and <i>Salmonella</i> serotypes in sheep during slaughter at two Australian abattoirs. Australian Veterinary Journal, 2010, 88, 399-404.	0.5	28
44	Escherichia coli O157 Somatic Antigen Is Present in an Isolate of E. fergusonii. Current Microbiology, 2006, 52, 482-486.	1.0	25
45	Bacteriological Profile of Raw, Frozen Chicken Nuggets. Journal of Food Protection, 2008, 71, 613-615.	0.8	25
46	The Prevalence and Concentration of <i>Bacillus cereus</i> in Retail Food Products in Brisbane, Australia. Foodborne Pathogens and Disease, 2010, 7, 867-870.	0.8	25
47	Characterisation of a novel <i>Mannheimia</i> sp from Australian feedlot cattle. Australian Veterinary Journal, 2001, 79, 634-639.	0.5	24
48	Comparison between human and animal isolates of Shiga toxin-producing Escherichia coli O157 from Australia. Epidemiology and Infection, 2002, 128, 357-362.	1.0	24
49	Attachment of Shiga Toxigenic Escherichia coli to Beef Muscle and Adipose Tissue. Journal of Food Protection, 2006, 69, 999-1006.	0.8	24
50	Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat. Foods, 2021, 10, 1598.	1.9	24
51	Managing safety and quality through the red meat chain. Meat Science, 2007, 77, 28-35.	2.7	23
52	A comparison of antibiotic resistance integrons in cattle from separate beef meat production systems at slaughter. Journal of Applied Microbiology, 2008, 104, 651-658.	1.4	23
53	Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter. PLoS ONE, 2017, 12, e0177728.	1.1	23
54	Integron-containing bacteria in faeces of cattle from different production systems at slaughter. Journal of Applied Microbiology, 2009, 107, 540-545.	1.4	22

#	Article	IF	CITATIONS
55	An outbreak of haemorrhagic septicaemia associated with Pasteurella multocida subsp gallicida in a large pig herd. Australian Veterinary Journal, 1996, 73, 27-29.	0.5	21
56	International Comparison of Clinical, Bovine, and Environmental <i>Escherichia coli</i> O157 Isolates on the Basis of Shiga Toxin-Encoding Bacteriophage Insertion Site Genotypes. Applied and Environmental Microbiology, 2008, 74, 7447-7450.	1.4	21
57	Salmonella Sofia Differs from Other Poultry-Associated Salmonella Serovars with Respect to Cell Surface Hydrophobicity. Journal of Food Protection, 2008, 71, 2421-2428.	0.8	20
58	Relative prevalence of Salmonella Sofia on broiler chickens pre- and postprocessing in Australia. Poultry Science, 2010, 89, 1544-1548.	1.5	19
59	Vibrioferrin production by the food spoilage bacterium Pseudomonas fragi. FEMS Microbiology Letters, 2018, 365, .	0.7	19
60	Use of pulse field gel electrophoresis for the epidemiological characterisation of coagulase positive Staphylococcus isolated from meat workers and beef carcasses. International Journal of Food Microbiology, 1999, 48, 81-85.	2.1	17
61	A review of the ecology, colonization and genetic characterization of Salmonella enterica serovar Sofia, a prolific but avirulent poultry serovar in Australia. Food Research International, 2012, 45, 770-779.	2.9	16
62	A Genomic Island in Salmonella enterica ssp. salamae Provides New Insights on the Genealogy of the Locus of Enterocyte Effacement. PLoS ONE, 2012, 7, e41615.	1.1	14
63	Comparative Genomics and Phenotypic Investigations Into Antibiotic, Heavy Metal, and Disinfectant Susceptibilities of Salmonella enterica Strains Isolated in Australia. Frontiers in Microbiology, 2019, 10, 1620.	1.5	13
64	Effect of peracetic acid on Campylobacter in food matrices mimicking commercial poultry processing. Food Control, 2020, 113, 107185.	2.8	13
65	Impact of Poultry Processing Operating Parameters on Bacterial Transmission and Persistence on Chicken Carcasses and Their Shelf Life. Applied and Environmental Microbiology, 2020, 86, .	1.4	13
66	Characterization of Shiga ToxigenicEscherichia coliO157 and Non-O157 Isolates from Ruminant Feces in Malaysia. BioMed Research International, 2015, 2015, 1-8.	0.9	12
67	Salmonella response to physical interventions employed in red meat processing facilities. Food Control, 2019, 103, 91-102.	2.8	12
68	Overexpressing ovotransferrin and avian β-defensin-3 improves antimicrobial capacity of chickens and poultry products. Transgenic Research, 2019, 28, 51-76.	1.3	12
69	Significance of the rdar and bdar morphotypes in the hydrophobicity and attachment to abiotic surfaces of Salmonella Sofia and other poultry-associated Salmonella serovars. Letters in Applied Microbiology, 2011, 53, 581-584.	1.0	10
70	Applicability of Enterobacteriaceae and coliforms tests as indicators for Cronobacter in milk powder factory environments. Food Microbiology, 2021, 94, 103642.	2.1	10
71	Effect of diet on the concentration of complex Shiga toxin-producing Escherichia coli and EHEC virulence genes in bovine faeces, hide and carcass. International Journal of Food Microbiology, 2008, 121, 208-216.	2.1	9
72	<i>Salmonella</i> Typhimurium and <i>Salmonella</i> Sofia: Growth in and Persistence on Eggs under Production and Retail Conditions. BioMed Research International, 2015, 2015, 1-8.	0.9	9

#	Article	IF	CITATIONS
73	Mapping the carriage of flaA-restriction fragment length polymorphism Campylobacter genotypes on poultry carcasses through the processing chain and comparison to clinical isolates. Food Microbiology, 2015, 48, 116-122.	2.1	9
74	A study of the use of multilocus enzyme electrophoresis as a typing tool in fowl cholera outbreaks. Avian Pathology, 1999, 28, 195-198.	0.8	8
75	A Survey of the Microbiological Quality of Feral Pig Carcasses Processed for Human Consumption in Queensland, Australia. Foodborne Pathogens and Disease, 2008, 5, 105-109.	0.8	8
76	Prevalence and Concentration of Arcobacter spp. on Australian Beef Carcasses. Journal of Food Protection, 2012, 75, 1479-1482.	0.8	8
77	Role of Capsular Polysaccharides and Lipooligosaccharides in <i>Campylobacter</i> Surface Properties, Autoagglutination, and Attachment to Abiotic Surfaces. Foodborne Pathogens and Disease, 2013, 10, 506-513.	0.8	8
78	Virulence properties of Escherichia coli isolated from Australian dairy powder factory environments. International Dairy Journal, 2009, 19, 178-179.	1.5	7
79	Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions. BMC Microbiology, 2016, 16, 212.	1.3	7
80	Transcriptomic response of Escherichia coli O157 isolates on meat: Comparison between a typical Australian isolate from cattle and a pathogenic clinical isolate. Food Microbiology, 2019, 82, 378-387.	2.1	7
81	Detection and Typing Strategies for Pathogenic Escherichia coli. SpringerBriefs in Food, Health and Nutrition, 2015, , .	0.5	6
82	Characterization of Escherichia coli and Salmonella from Victoria, Australia, Dairy Farm Environments. Journal of Food Protection, 2017, 80, 2078-2082.	0.8	6
83	Salmonella survival after exposure to heat in a model meat juice system. Food Microbiology, 2021, 94, 103628.	2.1	6
84	Characterisation of the Brochothrix thermosphacta sortase A enzyme. FEMS Microbiology Letters, 2018, 365, .	0.7	5
85	Survival of Salmonella Under Heat Stress is Associated with the Presence/Absence of CRISPR Cas Genes and Iron Levels. Current Microbiology, 2021, 78, 1741-1751.	1.0	5
86	Comparison between cage and free-range egg production on microbial composition, diversity and the presence of Salmonella enterica. Food Microbiology, 2021, 97, 103754.	2.1	5
87	Survival of Salmonella on Red Meat in Response to Dry Heat. Journal of Food Protection, 2021, 84, 372-380.	0.8	5
88	Potential Role for the 4,12 Antigen in the Prevalence of Clonal Salmonella Serovars in Poultry. Applied and Environmental Microbiology, 2009, 75, 3377-3378.	1.4	4
89	Pathogenic Escherichia coli and One Health Implications. Current Topics in Microbiology and Immunology, 2012, 366, 49-62.	0.7	4
90	Pathogenic Escherichia coli and One Health Implications. Current Topics in Microbiology and Immunology, 2012, , 49-62.	0.7	3

#	Article	IF	CITATIONS
91	Draft Genome Sequences of Four Antibiotic-Resistant Salmonella Strains Isolated from Australian Red Meat Animal Species. Microbiology Resource Announcements, 2019, 8, .	0.3	3
92	Salmonella enterica subsp. salamae serovar Sofia, a prevalent serovar in Australian broiler chickens, is also capable of transient colonisation in layers. British Poultry Science, 2018, 59, 270-277.	0.8	2
93	Typing and Subtyping Methods for Pathogenic Escherichia coli. SpringerBriefs in Food, Health and Nutrition, 2015, , 67-99.	0.5	1
94	Introduction to Pathogenic Escherichia coli. SpringerBriefs in Food, Health and Nutrition, 2015, , 1-38.	0.5	1
95	Isolation and Detection of Pathogenic Escherichia coli in Foods. SpringerBriefs in Food, Health and Nutrition, 2015, , 39-65.	0.5	0