
Yibing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3223547/publications.pdf Version: 2024-02-01

VIRING

#	Article	IF	CITATIONS
1	Bifunctional Porous NiFe/NiCo ₂ O ₄ /Ni Foam Electrodes with Triple Hierarchy and Double Synergies for Efficient Whole Cell Water Splitting. Advanced Functional Materials, 2016, 26, 3515-3523.	7.8	545
2	Enhancing Water Oxidation Catalysis on a Synergistic Phosphorylated NiFe Hydroxide by Adjusting Catalyst Wettability. ACS Catalysis, 2017, 7, 2535-2541.	5.5	292
3	Iron-Doped Nickel Phosphate as Synergistic Electrocatalyst for Water Oxidation. Chemistry of Materials, 2016, 28, 5659-5666.	3.2	262
4	Promoting Oxygen Evolution Reactions through Introduction of Oxygen Vacancies to Benchmark NiFe–OOH Catalysts. ACS Energy Letters, 2018, 3, 1515-1520.	8.8	249
5	Electronic Structure Engineering of Singleâ€Atom Ru Sites via Co–N4 Sites for Bifunctional pHâ€Universal Water Splitting. Advanced Materials, 2022, 34, e2110103.	11.1	199
6	Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction. Energy and Environmental Science, 2020, 13, 4225-4237.	15.6	186
7	In Situ Reconstruction of Vâ€Doped Ni ₂ P Preâ€Catalysts with Tunable Electronic Structures for Water Oxidation. Advanced Functional Materials, 2021, 31, 2100614.	7.8	129
8	<i>Operando</i> Raman Spectroscopy Reveals Cr-Induced-Phase Reconstruction of NiFe and CoFe Oxyhydroxides for Enhanced Electrocatalytic Water Oxidation. Chemistry of Materials, 2020, 32, 4303-4311.	3.2	115
9	Implanting Ni-O-VOx sites into Cu-doped Ni for low-overpotential alkaline hydrogen evolution. Nature Communications, 2020, 11, 2720.	5.8	113
10	Engineering the Activity and Stability of MOFâ€Nanocomposites for Efficient Water Oxidation. Advanced Energy Materials, 2021, 11, 2003759.	10.2	108
11	Phosphine vapor-assisted construction of heterostructured Ni ₂ P/NiTe ₂ catalysts for efficient hydrogen evolution. Energy and Environmental Science, 2020, 13, 1799-1807.	15.6	105
12	Sulfurâ€Dopantâ€Promoted Electroreduction of CO ₂ over Coordinatively Unsaturated Niâ€N ₂ Moieties. Angewandte Chemie - International Edition, 2021, 60, 23342-23348.	7.2	98
13	NiFeCr Hydroxide Holey Nanosheet as Advanced Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 41239-41245.	4.0	96
14	Processable Surface Modification of Nickelâ€Heteroatom (N, S) Bridge Sites for Promoted Alkaline Hydrogen Evolution. Angewandte Chemie - International Edition, 2019, 58, 461-466.	7.2	95
15	Hierarchical nanoporous Ni(Cu) alloy anchored on amorphous NiFeP as efficient bifunctional electrocatalysts for hydrogen evolution and hydrazine oxidation. Journal of Catalysis, 2019, 373, 180-189.	3.1	85
16	Threeâ€Ðimensional Branched and Faceted Gold–Ruthenium Nanoparticles: Using Nanostructure to Improve Stability in Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2018, 57, 10241-10245.	7.2	83
17	Fabrication of Nanoporous Nickel–Iron Hydroxylphosphate Composite as Bifunctional and Reversible Catalyst for Highly Efficient Intermittent Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 35837-35846.	4.0	76
18	Encapsulation of Ni/Fe ₃ O ₄ heterostructures inside onion-like N-doped carbon nanorods enables synergistic electrocatalysis for water oxidation. Nanoscale, 2018, 10, 3997-4003.	2.8	75

Yibing Li

#	Article	IF	CITATIONS
19	High valence chromium regulated cobalt-iron-hydroxide for enhanced water oxidation. Journal of Power Sources, 2018, 402, 381-387.	4.0	60
20	Manipulation of Charge Transport by Metallic V ₁₃ O ₁₆ Decorated on Bismuth Vanadate Photoelectrochemical Catalyst. Advanced Materials, 2019, 31, e1807204.	11.1	57
21	Enhanced surface wettability and innate activity of an iron borate catalyst for efficient oxygen evolution and gas bubble detachment. Journal of Materials Chemistry A, 2019, 7, 15252-15261.	5.2	52
22	Co-Fe binary metal oxide electrocatalyst with synergistic interface structures for efficient overall water splitting. Catalysis Today, 2020, 351, 44-49.	2.2	52
23	Cosynergistic Molybdate Oxoâ€Anionic Modification of FeNiâ€Based Electrocatalysts for Efficient Oxygen Evolution Reaction. Advanced Functional Materials, 2022, 32, 2107342.	7.8	49
24	Nanostructured Nickel Cobaltite Antispinel as Bifunctional Electrocatalyst for Overall Water Splitting. Journal of Physical Chemistry C, 2017, 121, 25888-25897.	1.5	39
25	Vertical Growth of Porous Perovskite Nanoarrays on Nickel Foam for Efficient Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 4863-4870.	3.2	38
26	Pulsed electrodeposition of well-ordered nanoporous Cu-doped Ni arrays promotes high-efficiency overall hydrazine splitting. Journal of Materials Chemistry A, 2020, 8, 21084-21093.	5.2	36
27	Hierarchical Ultrathin Mo/MoS _{2(1â^²} <i>_x<i²<sub>a^²<i>_y</i>₎P<i>_{x< Nanosheets Assembled on P, N Coâ€Doped Carbon Nanotubes for Hydrogen Evolution in Both Acidic and Alkaline Electrolytes, Small, 2020, 16, e2004973.}</i></i²<sub></i>	/sub>	29
28	Vanadium-induced fragmentation of crystalline CoFe hydr(oxy)oxide electrocatalysts for enhanced oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 35230-35238.	3.8	22
29	Threeâ€Dimensional Branched and Faceted Gold–Ruthenium Nanoparticles: Using Nanostructure to Improve Stability in Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2018, 130, 10398-10402.	1.6	21
30	Low-Temperature Synthesis of Cuboid Silver Tetrathiotungstate (Ag2WS4) as Electrocatalyst for Hydrogen Evolution Reaction. Inorganic Chemistry, 2018, 57, 5791-5800.	1.9	20
31	Processable Surface Modification of Nickelâ€Heteroatom (N, S) Bridge Sites for Promoted Alkaline Hydrogen Evolution. Angewandte Chemie, 2018, 131, 471.	1.6	19
32	Amorphous FeOOH decorated hierarchy capillary-liked CoAl LDH catalysts for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 21289-21297.	3.8	18
33	Fe–N–C/Fe nanoparticle composite catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. Chemical Communications, 2022, 58, 2323-2326.	2.2	14
34	Common Pitfalls of Reporting Electrocatalysts for Water Splitting. Chemical Research in Chinese Universities, 2020, 36, 360-365.	1.3	12
35	Sulfurâ€Dopantâ€Promoted Electroreduction of CO 2 over Coordinatively Unsaturated Niâ€N 2 Moieties. Angewandte Chemie, 0, , .	1.6	9
36	Oxygen Corrosion Engineering of Nonprecious Ternary Metal Hydroxides toward Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 8597-8604.	3.2	8

Yibing Li

#	Article	IF	CITATIONS
37	Vanadium Oxide Clusters Decorated Metallic Cobalt Catalyst for Active Alkaline Hydrogen Evolution. Cell Reports Physical Science, 2020, 1, 100275.	2.8	7
38	Closely Arranged 3D–0D Graphene–Nickel Sulfide Superstructures for Bifunctional Hydrogen Electrocatalysis. ACS Applied Energy Materials, 2018, 1, 6368-6373.	2.5	5
39	Enhancement of ferromagnetic properties in (Fe, Ni) co-doped ZnO flowers by pulsed magnetic field processing. Journal of Materials Science: Materials in Electronics, 2019, 30, 8226.	1.1	4
40	Nitrogenâ€Rich, Wellâ€Dispersed Nanoporous Carbon Materials for Superâ€Efficient Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 1894-1900.	1.7	3
41	Oxygen Evolution Reaction: Engineering the Activity and Stability of MOFâ€Nanocomposites for Efficient Water Oxidation (Adv. Energy Mater. 16/2021). Advanced Energy Materials, 2021, 11, 2170063.	10.2	3