
Bernard R Glick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3223463/publications.pdf Version: 2024-02-01

REDNADD P CLICK

#	Article	IF	CITATIONS
1	Delivery of Beneficial Microbes via Seed Coating for Medicinal and Aromatic Plant Production: A Critical Review. Journal of Plant Growth Regulation, 2023, 42, 575-597.	5.1	8
2	Mitigation of lead (Pb) toxicity in rice cultivated with either ground water or wastewater by application of acidified carbon. Journal of Environmental Management, 2022, 307, 114521.	7.8	21
3	Recent Advances in Bacterial Amelioration of Plant Drought and Salt Stress. Biology, 2022, 11, 437.	2.8	70
4	Current Techniques to Study Beneficial Plant-Microbe Interactions. Microorganisms, 2022, 10, 1380.	3.6	28
5	Plant Growth Stimulation by Microbial Consortia. Agronomy, 2021, 11, 219.	3.0	131
6	Gene expression patterns in shoots of Camelina sativa with enhanced salinity tolerance provided by plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression of the corresponding acdS gene. Scientific Reports, 2021, 11, 4260.	3.3	13
7	Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiological Research, 2021, 245, 126690.	5.3	84
8	Draft Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas pseudoalcaligenes KB-10. Microbiology Resource Announcements, 2021, 10, .	0.6	1
9	Mycorrhizal-Bacterial Amelioration of Plant Abiotic and Biotic Stress. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	45
10	Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology, 2021, 10, 475.	2.8	128
11	Fourier Transform Infrared Spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil. PLoS ONE, 2021, 16, e0253390.	2.5	21
12	Recent Developments in the Study of Plant Microbiomes. Microorganisms, 2021, 9, 1533.	3.6	84
13	Plant Disease Management: Leveraging on the Plant-Microbe-Soil Interface in the Biorational Use of Organic Amendments. Frontiers in Plant Science, 2021, 12, 700507.	3.6	36
14	Multiple plant hormone catabolism activities: an adaptation to a plantâ€associated lifestyle by <i>Achromobacter</i> spp Environmental Microbiology Reports, 2021, 13, 533-539.	2.4	8
15	Contribution of Arbuscular Mycorrhizal Fungi, Phosphate–Solubilizing Bacteria, and Silicon to P Uptake by Plant. Frontiers in Plant Science, 2021, 12, 699618.	3.6	137
16	Genomic Analysis of the 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Pseudomonas thivervalensis SC5 Reveals Its Multifaceted Roles in Soil and in Beneficial Interactions With Plants. Frontiers in Microbiology, 2021, 12, 752288.	3.5	12
17	Effect of arbuscular mycorrhizal fungi on the physiological functioning of maize under zinc-deficient soils. Scientific Reports, 2021, 11, 18468.	3.3	43
18	Transcriptomic profiling of <i>Brassica napus</i> responses to <i>Pseudomonas aeruginosa</i> . Innate Immunity, 2021, 27, 143-157.	2.4	6

#	Article	IF	CITATIONS
19	Pseudomonas 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase and Its Role in Beneficial Plant-Microbe Interactions. Microorganisms, 2021, 9, 2467.	3.6	19
20	Regulation of Phosphorus and Zinc Uptake in Relation to Arbuscular Mycorrhizal Fungi for Better Maize Growth. Agronomy, 2021, 11, 2322.	3.0	12
21	PGPB Improve Photosynthetic Activity and Tolerance to Oxidative Stress in Brassica napus Grown on Salinized Soils. Applied Sciences (Switzerland), 2021, 11, 11442.	2.5	13
22	Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnology Reports (Amsterdam,) Tj ETQq0 C	0 41g2B T /O	ve do ck 10 Tf
23	Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiological Research, 2020, 241, 126589.	5.3	64
24	Exogenous ACC Deaminase Is Key to Improving the Performance of Pasture Legume-Rhizobial Symbioses in the Presence of a High Manganese Concentration. Plants, 2020, 9, 1630.	3.5	17
25	Plant–archaea relationships: a potential means to improve crop production in arid and semi-arid regions. World Journal of Microbiology and Biotechnology, 2020, 36, 133.	3.6	24
26	Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Applied Microbiology and Biotechnology, 2020, 104, 8607-8619.	3.6	87
27	Screening of Bacterial Endophytes Able to Promote Plant Growth and Increase Salinity Tolerance. Applied Sciences (Switzerland), 2020, 10, 5767.	2.5	23
28	The Use of Plant Growth-Promoting Bacteria to Prevent Nematode Damage to Plants. Biology, 2020, 9, 381.	2.8	48
29	Role of textile effluent fertilization with biosurfactant to sustain soil quality and nutrient availability. Journal of Environmental Management, 2020, 268, 110664.	7.8	19
30	Uncovering PGPB Vibrio spartinae inoculation-triggered physiological mechanisms involved in the tolerance of Halimione portulacoides to NaCl excess. Plant Physiology and Biochemistry, 2020, 154, 151-159.	5.8	8
31	The extreme plantâ€growthâ€promoting properties of <i>Pantoea phytobeneficialis</i> MSR2 revealed by functional and genomic analysis. Environmental Microbiology, 2020, 22, 1341-1355.	3.8	29
32	ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research, 2020, 235, 126439.	5.3	200
33	Rhizobacteria producing ACC deaminase mitigate water-stress response in finger millet (Eleusine) Tj ETQq1 1 0.7	784314 rgt 2.2	3T /Qverlock
34	Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environmental and Experimental Botany, 2020, 178, 104124.	4.2	176
35	Actinobacteria from Extreme Niches in Morocco and Their Plant Growth-Promoting Potentials. Diversity, 2019, 11, 139.	1.7	67
36	Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils. Ecotoxicology and Environmental Safety, 2019, 183, 109504.	6.0	75

#	Article	IF	CITATIONS
37	Mediterranean Native Leguminous Plants: A Reservoir of Endophytic Bacteria with Potential to Enhance Chickpea Growth under Stress Conditions. Microorganisms, 2019, 7, 392.	3.6	20
38	The Production of ACC Deaminase and Trehalose by the Plant Growth Promoting Bacterium Pseudomonas sp. UW4 Synergistically Protect Tomato Plants Against Salt Stress. Frontiers in Microbiology, 2019, 10, 1392.	3.5	111
39	ACC deaminase plays a major role in Pseudomonas fluorescens YsS6 ability to promote the nodulation of Alpha- and Betaproteobacteria rhizobial strains. Archives of Microbiology, 2019, 201, 817-822.	2.2	44
40	Diversity and Functionality of Culturable Endophytic Bacterial Communities in Chickpea Plants. Plants, 2019, 8, 42.	3.5	49
41	Plant health: feedback effect of root exudates-rhizobiome interactions. Applied Microbiology and Biotechnology, 2019, 103, 1155-1166.	3.6	250
42	Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 2019, 37, 177-192.	11.7	1,108
43	Isolation and characterization of novel soil- and plant-associated bacteria with multiple phytohormone-degrading activities using a targeted methodology. Access Microbiology, 2019, 1, e000053.	0.5	24
44	Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie Van Leeuwenhoek, 2018, 111, 1645-1660.	1.7	37
45	Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiological Research, 2018, 208, 25-31.	5.3	266
46	Improvement of Cupriavidus taiwanensis Nodulation and Plant Growth Promoting Abilities by the Expression of an Exogenous ACC Deaminase Gene. Current Microbiology, 2018, 75, 961-965.	2.2	9
47	The modulation of leguminous plant ethylene levels by symbiotic rhizobia played a role in the evolution of the nodulation process. Heliyon, 2018, 4, e01068.	3.2	12
48	Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant–Bacterial Interactions. Frontiers in Plant Science, 2018, 9, 114.	3.6	174
49	Gene Expression Patterns in Roots of Camelina sativa With Enhanced Salinity Tolerance Arising From Inoculation of Soil With Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression the Corresponding acdS Gene. Frontiers in Microbiology, 2018, 9, 1297.	3.5	37
50	Evaluation of the interspecific competition within Agrobacterium spp. in the soil and rhizosphere of tomato and maize. Journal of Plant Pathology, 2018, 100, 505-511.	1.2	15
51	Near-Complete Genome Sequence of Pseudomonas palleroniana MAB3, a Beneficial 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Bacterium Able To Promote the Growth of Mushrooms and Plants. Genome Announcements, 2018, 6, .	0.8	3
52	Survey of Plant Growth-Promoting Mechanisms in Native Portuguese Chickpea Mesorhizobium Isolates. Microbial Ecology, 2017, 73, 900-915.	2.8	39
53	Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria. Annals of Botany, 2017, 120, 101-122.	2.9	16
54	Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 2017, 33, 197.	3.6	683

#	Article	IF	CITATIONS
55	Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil, 2017, 410, 335-356.	3.7	309
56	A nodule endophytic plant growth-promoting Pseudomonas and its effects on growth, nodulation and metal uptake in Medicago lupulina under copper stress. Annals of Microbiology, 2017, 67, 49-58.	2.6	49
57	Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 2017, 8, 971.	3.5	975
58	The Role of Rhizobial ACC Deaminase in the Nodulation Process of Leguminous Plants. International Journal of Agronomy, 2016, 2016, 1-9.	1.2	48
59	Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa. Frontiers in Microbiology, 2016, 7, 1966.	3.5	77
60	Plant growth-promoting bacterial endophytes. Microbiological Research, 2016, 183, 92-99.	5.3	1,194
61	Impact of Soil Salinity on the Structure of the Bacterial Endophytic Community Identified from the Roots of Caliph Medic (Medicago truncatula). PLoS ONE, 2016, 11, e0159007.	2.5	102
62	The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress. International Microbiology, 2016, 19, 143-155.	2.4	41
63	Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-overproducing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant and Soil, 2015, 391, 383-398.	3.7	66
64	Gene Expression of Secale cereale (Fall Rye) Grown in Petroleum Hydrocarbon (PHC) Impacted Soil With and Without Plant Growth-Promoting Rhizobacteria (PGPR), Pseudomonas putida. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	4
65	Bacterial Modulation of Plant Ethylene Levels. Plant Physiology, 2015, 169, 13-22.	4.8	282
66	Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (<i>Solanum lycopersicum</i>) under salt stress. Botany, 2014, 92, 775-781.	1.0	59
67	Bacterial Ice Crystal Controlling Proteins. Scientifica, 2014, 2014, 1-20.	1.7	75
68	Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek, 2014, 106, 85-125.	1.7	526
69	Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry, 2014, 80, 160-167.	5.8	442
70	Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 2014, 169, 30-39.	5.3	1,661
71	Molecular Characterization and Expression Analysis of Chloroplast Protein Import Components in Tomato (Solanum lycopersicum). PLoS ONE, 2014, 9, e95088.	2.5	13
72	New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance. PLoS ONE, 2014, 9, e99168.	2.5	206

#	Article	IF	CITATIONS
73	Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in <i>Mesorhizobium</i> spp. reduces the negative effects of salt stress in chickpea. FEMS Microbiology Letters, 2013, 349, n/a-n/a.	1.8	49
74	Evidence for the involvement of ACC deaminase from Pseudomonas putida UW4 in the biocontrol of pine wilt disease caused by Bursaphelenchus xylophilus. BioControl, 2013, 58, 427-433.	2.0	55
75	Strategies to ameliorate abiotic stress-induced plant senescence. Plant Molecular Biology, 2013, 82, 623-633.	3.9	133
76	The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4. PLoS ONE, 2013, 8, e58640.	2.5	144
77	ACC deaminase genes are conserved among <i>Mesorhizobium</i> species able to nodulate the same host plant. FEMS Microbiology Letters, 2012, 336, 26-37.	1.8	51
78	Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, 2012, 1-15.	1.7	2,042
79	Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiology and Biochemistry, 2011, 49, 427-434.	5.8	232
80	Making Phytoremediation Work Better: Maximizing a Plant's Growth Potential in the Midst of Adversity. International Journal of Phytoremediation, 2011, 13, 4-16.	3.1	91
81	Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 2010, 28, 367-374.	11.7	976
82	1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Genes in Rhizobia from Southern Saskatchewan. Microbial Ecology, 2009, 57, 423-436.	2.8	170
83	The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium <i>Burkholderia phytofirmans</i> PsJN. FEMS Microbiology Letters, 2009, 296, 131-136.	1.8	182
84	Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiology Ecology, 2008, 64, 459-467.	2.7	131
85	ACC deaminase from plant growth-promoting bacteria affects crown gall development. Canadian Journal of Microbiology, 2007, 53, 1291-1299.	1.7	67
86	1-Aminocyclopropane-1-carboxylate deaminase from <i>Pseudomonas putida</i> UW4 facilitates the growth of canola in the presence of salt. Canadian Journal of Microbiology, 2007, 53, 912-918.	1.7	325
87	Promotion of Plant Growth by Bacterial ACC Deaminase. Critical Reviews in Plant Sciences, 2007, 26, 227-242.	5.7	742
88	Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 2007, 119, 329-339.	1.7	748
89	The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant and Soil, 2006, 288, 309-318.	3.7	73
90	Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt. World Journal of Microbiology and Biotechnology, 2006, 22, 277-282.	3.6	120

#	Article	IF	CITATIONS
91	Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters, 2005, 251, 1-7.	1.8	726
92	Changes in Gene Expression in Canola Roots Induced by ACC-Deaminase-Containing Plant-Growth-Promoting Bacteria. Molecular Plant-Microbe Interactions, 2004, 17, 865-871.	2.6	59
93	Expression of an Exogenous 1-Aminocyclopropane-1-Carboxylate Deaminase Gene in Sinorhizobium meliloti Increases Its Ability To Nodulate Alfalfa. Applied and Environmental Microbiology, 2004, 70, 5891-5897.	3.1	172
94	Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek, 2004, 86, 1-25.	1.7	695
95	The Effect of the Ethylene Action Inhibitor 1-Cyclopropenylmethyl Butyl Ether on Early Plant Growth. Journal of Plant Growth Regulation, 2004, 23, 307-312.	5.1	7
96	Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 2004, 42, 565-572.	5.8	1,038
97	Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1703, 11-19.	2.3	126
98	Bacterial ACC Deaminase and the Alleviation of Plant Stress. Advances in Applied Microbiology, 2004, 56, 291-312.	2.4	219
99	Root and hypocotyl growth in transgenic tomatoes that express the bacterial enzyme ACC deaminase. Journal of Plant Biology, 2003, 46, 181-186.	2.1	0
100	Transgenic plants with altered ethylene biosynthesis or perception. Biotechnology Advances, 2003, 21, 193-210.	11.7	167
101	Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 2003, 21, 383-393.	11.7	678
102	Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 2003, 118, 10-15.	5.2	1,185
103	Regulation of Expression of the prb-1b / ACC Deaminase Gene by UV-8 in Transgenic Tomatoes. Journal of Plant Biochemistry and Biotechnology, 2003, 12, 25-29.	1.7	11
104	Rhizobium leguminosarum Biovar viciae 1-Aminocyclopropane-1-Carboxylate Deaminase Promotes Nodulation of Pea Plants. Applied and Environmental Microbiology, 2003, 69, 4396-4402.	3.1	265
105	Role of Pseudomonas putida Indoleacetic Acid in Development of the Host Plant Root System. Applied and Environmental Microbiology, 2002, 68, 3795-3801.	3.1	1,498
106	Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Canadian Journal of Microbiology, 2001, 47, 368-372.	1.7	209
107	Relationship Between Antifreeze Protein and Freezing Resistance in Pseudomonas putida GR12-2. Current Microbiology, 2001, 43, 365-370.	2.2	26
108	Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Molecular Plant Pathology, 2001, 2, 135-145.	4.2	102

#	Article	IF	CITATIONS
109	Amelioration of flooding stress by ACC deaminase-containingplant growth-promoting bacteria. Plant Physiology and Biochemistry, 2001, 39, 11-17.	5.8	406
110	Isolation and characterization of an unusual 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase gene from Enterobacter cloacae UW4. Antonie Van Leeuwenhoek, 2001, 80, 255-261.	1.7	11
111	Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiology Ecology, 2001, 35, 181-187.	2.7	4
112	Isolation of a Gene from Burkholderia cepacia IS-16 Encoding a Protein That Facilitates Phosphatase Activity. Current Microbiology, 2000, 40, 362-366.	2.2	41
113	An ACC Deaminase Minus Mutant of Enterobacter cloacae UW4No Longer Promotes Root Elongation. Current Microbiology, 2000, 41, 101-105.	2.2	205
114	Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into <i>Pseudomonas fluorescens</i> strain CHAO and its <i>gac</i> A derivative CHA96 on their growth-promoting and disease-suppressive capacities. Canadian Journal of Microbiology, 2000, 46, 898-907.	1.7	309
115	The potential of Lâ€form bacteria in biotechnology. Canadian Journal of Chemical Engineering, 1999, 77, 973-977.	1.7	4
116	Isolation and Characterization of Mutants of the Plant Growth-Promoting Rhizobacterium Pseudomonas putida GR12-2 That Overproduce Indoleacetic Acid. Current Microbiology, 1996, 32, 67-71.	2.2	306
117	An inexpensive system to provide sparged aeration to shake flask cultures. Biotechnology Letters, 1995, 9, 665-670.	0.5	3
118	Metabolic load and heterologous gene expression. Biotechnology Advances, 1995, 13, 247-261.	11.7	522
119	The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 1995, 41, 109-117.	1.7	2,062
120	1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium <i>Pseudomonas putida</i> GR12-2 do not stimulate canola root elongation. Canadian Journal of Microbiology, 1994, 40, 911-915.	1.7	227
121	Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium <i>Pseudomonas putida</i> GR12-2. Canadian Journal of Microbiology, 1994, 40, 1019-1025.	1.7	312
122	Activities of chlorophyllase, phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase in the primary leaves of soybean during senescence and drought. Physiologia Plantarum, 1991, 81, 473-480.	5.2	88
123	Plant-microbial interaction under gnotobiotic conditions: A scanning electron microscope study. Current Microbiology, 1991, 23, 111-114.	2.2	50
124	Effect of transformation ofAzotobacter vinelandii with the low copy number plasmid pRK290. Current Microbiology, 1989, 19, 143-146.	2.2	12
125	Integration of exogenous DNA into the genome of Azotobacter vinelandii. Archives of Microbiology, 1989, 152, 437-440.	2.2	14
126	A Method for the Purification of Bovine Somatomedin C. Preparative Biochemistry and Biotechnology, 1987, 17, 9-24.	0.5	1

8

#	Article	IF	CITATIONS
127	A rapid method for analyzing the ligation products of synthetic oligodeoxyribonucleotides. Molecular Biology Reports, 1987, 12, 285-289.	2.3	Ο
128	The application of plant growth-promoting rhizobacteria in <i>Solanum lycopersicum</i> production in the agricultural system: a review. PeerJ, 0, 10, e13405.	2.0	18