
David R Roalf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3223247/publications.pdf Version: 2024-02-01

DAVID P POALE

#	Article	IF	CITATIONS
1	Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. NeuroImage, 2017, 154, 174-187.	4.2	842
2	Harmonization of multi-site diffusion tensor imaging data. Neurolmage, 2017, 161, 149-170.	4.2	731
3	Linked dimensions of psychopathology and connectivity in functional brain networks. Nature Communications, 2018, 9, 3003.	12.8	323
4	Modular Segregation of Structural Brain Networks Supports the Development of Executive Function in Youth. Current Biology, 2017, 27, 1561-1572.e8.	3.9	305
5	Linked Sex Differences in Cognition and Functional Connectivity in Youth. Cerebral Cortex, 2015, 25, 2383-2394.	2.9	302
6	Development of structure–function coupling in human brain networks during youth. Proceedings of the United States of America, 2020, 117, 771-778.	7.1	296
7	Comparative accuracies of two common screening instruments forÂclassification of Alzheimer's disease, mild cognitive impairment, andÂhealthy aging. Alzheimer's and Dementia, 2013, 9, 529-537.	0.8	292
8	Quantitative assessment of structural image quality. NeuroImage, 2018, 169, 407-418.	4.2	291
9	Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron, 2021, 109, 2820-2846.	8.1	272
10	The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth. NeuroImage, 2016, 124, 1115-1119.	4.2	268
11	Functional Maturation of the Executive System during Adolescence. Journal of Neuroscience, 2013, 33, 16249-16261.	3.6	225
12	The Philadelphia Neurodevelopmental Cohort: constructing a deep phenotyping collaborative. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2015, 56, 1356-1369.	5.2	208
13	The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort. NeuroImage, 2016, 125, 903-919.	4.2	202
14	Common and Dissociable Mechanisms of Executive System Dysfunction Across Psychiatric Disorders in Youth. American Journal of Psychiatry, 2016, 173, 517-526.	7.2	191
15	Impact of puberty on the evolution of cerebral perfusion during adolescence. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8643-8648.	7.1	169
16	Individual Variation in Functional Topography of Association Networks in Youth. Neuron, 2020, 106, 340-353.e8.	8.1	162
17	Burden of Environmental Adversity Associated With Psychopathology, Maturation, and Brain Behavior Parameters in Youths. JAMA Psychiatry, 2019, 76, 966.	11.0	157
18	Developmental increases in white matter network controllability support a growing diversity of brain dynamics. Nature Communications, 2017, 8, 1252.	12.8	140

#	Article	IF	CITATIONS
19	The modular organization of human anatomical brain networks: Accounting for the cost of wiring. Network Neuroscience, 2017, 1, 42-68.	2.6	136
20	Diffusion MRI of white matter microstructure development in childhood and adolescence: Methods, challenges and progress. Developmental Cognitive Neuroscience, 2018, 33, 161-175.	4.0	128
21	QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data. Nature Methods, 2021, 18, 775-778.	19.0	127
22	Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: Convergence with idiopathic psychosis and effects of deletion size. Molecular Psychiatry, 2020, 25, 1822-1834.	7.9	122
23	Structural Brain Abnormalities in Youth With Psychosis Spectrum Symptoms. JAMA Psychiatry, 2016, 73, 515.	11.0	116
24	Motion artifact in studies of functional connectivity: Characteristics and mitigation strategies. Human Brain Mapping, 2019, 40, 2033-2051.	3.6	104
25	Topologically Dissociable Patterns of Development of the Human Cerebral Cortex. Journal of Neuroscience, 2015, 35, 599-609.	3.6	103
26	The impact of in-scanner head motion on structural connectivity derived from diffusion MRI. NeuroImage, 2018, 173, 275-286.	4.2	102
27	Persistence of psychosis spectrum symptoms in the Philadelphia Neurodevelopmental Cohort: a prospective twoâ€year followâ€up. World Psychiatry, 2017, 16, 62-76.	10.4	97
28	Olfactory Functioning in Schizophrenia: Relationship to Clinical, Neuropsychological, and Volumetric MRI Measures. Journal of Clinical and Experimental Neuropsychology, 2006, 28, 1444-1461.	1.3	96
29	Decrements in Volume of Anterior Ventromedial Temporal Lobe and Olfactory Dysfunction in Schizophrenia. Archives of General Psychiatry, 2003, 60, 1193.	12.3	90
30	Behavioral and physiological findings of gender differences in global-local visual processing. Brain and Cognition, 2006, 60, 32-42.	1.8	90
31	Falling risk factors in Parkinson's disease. NeuroRehabilitation, 2005, 20, 169-182.	1.3	88
32	Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Communications Biology, 2020, 3, 261.	4.4	88
33	Conversion between Miniâ€Mental State Examination, Montreal Cognitive Assessment, and Dementia Rating Scaleâ€2 scores in Parkinson's disease. Movement Disorders, 2014, 29, 1809-1815.	3.9	86
34	Sex Differences in the Effect of Puberty on Hippocampal Morphology. Journal of the American Academy of Child and Adolescent Psychiatry, 2014, 53, 341-350.e1.	0.5	83
35	Within-individual variability in neurocognitive performance: Age- and sex-related differences in children and youths from ages 8 to 21 Neuropsychology, 2014, 28, 506-518.	1.3	82
36	Elevated Amygdala Perfusion Mediates Developmental Sex Differences in Trait Anxiety. Biological Psychiatry, 2016, 80, 775-785.	1.3	82

#	Article	IF	CITATIONS
37	A quantitative meta-analysis of olfactory dysfunction in mild cognitive impairment. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 226-232.	1.9	79
38	Evidence for Dissociable Linkage of Dimensions of Psychopathology to Brain Structure in Youths. American Journal of Psychiatry, 2019, 176, 1000-1009.	7.2	77
39	Mapping glutamate in subcortical brain structures using highâ€resolution GluCEST MRI. NMR in Biomedicine, 2013, 26, 1278-1284.	2.8	73
40	Quantitative assessment of finger tapping characteristics in mild cognitive impairment, Alzheimer's disease, and Parkinson's disease. Journal of Neurology, 2018, 265, 1365-1375.	3.6	73
41	Neuroimaging predictors of cognitive performance across a standardized neurocognitive battery Neuropsychology, 2014, 28, 161-176.	1.3	68
42	Leveraging multi-shell diffusion for studies of brain development in youth and young adulthood. Developmental Cognitive Neuroscience, 2020, 43, 100788.	4.0	65
43	Aberrant Cortical Morphometry in the 22q11.2 Deletion Syndrome. Biological Psychiatry, 2015, 78, 135-143.	1.3	61
44	Longitudinal Development of Brain Iron Is Linked to Cognition in Youth. Journal of Neuroscience, 2020, 40, 1810-1818.	3.6	60
45	Risk, Reward, and Economic Decision Making in Aging. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2012, 67B, 289-298.	3.9	59
46	Sex differences in network controllability as a predictor of executive function in youth. NeuroImage, 2019, 188, 122-134.	4.2	59
47	Transdiagnostic dimensions of psychopathology explain individuals' unique deviations from normative neurodevelopment in brain structure. Translational Psychiatry, 2021, 11, 232.	4.8	58
48	Diminished Cortical Thickness Is Associated with Impulsive Choice in Adolescence. Journal of Neuroscience, 2018, 38, 2471-2481.	3.6	55
49	Mapping Subcortical Brain Alterations in 22q11.2 Deletion Syndrome: Effects of Deletion Size and Convergence With Idiopathic Neuropsychiatric Illness. American Journal of Psychiatry, 2020, 177, 589-600.	7.2	55
50	Validation of the Cognition Test Battery for Spaceflight in a Sample of Highly Educated Adults. Aerospace Medicine and Human Performance, 2017, 88, 937-946.	0.4	54
51	White matter organization and neurocognitive performance variability in schizophrenia. Schizophrenia Research, 2013, 143, 172-178.	2.0	53
52	Defining and validating a short form Montreal Cognitive Assessment (s-MoCA) for use in neurodegenerative disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1303-1310.	1.9	50
53	Altered white matter microstructure in 22q11.2 deletion syndrome: a multisite diffusion tensor imaging study. Molecular Psychiatry, 2020, 25, 2818-2831.	7.9	50
54	The Relationship Between White Matter Microstructure and General Cognitive Ability in Patients With Schizophrenia and Healthy Participants in the ENIGMA Consortium. American Journal of Psychiatry, 2020, 177, 537-547.	7.2	49

#	Article	IF	CITATIONS
55	Odor Identification Screening Improves Diagnostic Classification in Incipient Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 55, 1497-1507.	2.6	48
56	Optimization of energy state transition trajectory supports the development of executive function during youth. ELife, 2020, 9, .	6.0	47
57	A meta-analysis of ultra-high field glutamate, glutamine, GABA and glutathione 1HMRS in psychosis: Implications for studies of psychosis risk. Schizophrenia Research, 2020, 226, 61-69.	2.0	46
58	International consensus statement on allergy and rhinology: Olfaction. International Forum of Allergy and Rhinology, 2022, 12, 327-680.	2.8	43
59	White matter microstructure in schizophrenia: Associations to neurocognition and clinical symptomatology. Schizophrenia Research, 2015, 161, 42-49.	2.0	42
60	Heritability of Subcortical and Limbic Brain Volume and Shape in Multiplex-Multigenerational Families with Schizophrenia. Biological Psychiatry, 2015, 77, 137-146.	1.3	42
61	Body image attitude among Chinese college students. PsyCh Journal, 2018, 7, 31-40.	1.1	42
62	Neurocognitive Performance Stability in a Multiplex Multigenerational Study of Schizophrenia. Schizophrenia Bulletin, 2013, 39, 1008-1017.	4.3	39
63	Development of a computerized adaptive screening tool for overall psychopathology ("pâ€). Journal of Psychiatric Research, 2019, 116, 26-33.	3.1	37
64	Bridging cognitive screening tests in neurologic disorders: A crosswalk between the short Montreal Cognitive Assessment and Mini-Mental State Examination. , 2017, 13, 947-952.		35
65	Neurostructural Heterogeneity in Youths With Internalizing Symptoms. Biological Psychiatry, 2020, 87, 473-482.	1.3	34
66	A quantitative meta-analysis of brain glutamate metabolites in aging. Neurobiology of Aging, 2020, 95, 240-249.	3.1	33
67	Olfactory Dysfunction in Neurodevelopmental Disorders: A Meta-analytic Review of Autism Spectrum Disorders, Attention Deficit/Hyperactivity Disorder and Obsessive–Compulsive Disorder. Journal of Autism and Developmental Disorders, 2020, 50, 2685-2697.	2.7	33
68	Phenylthiocarbamide Perception in Patients With Schizophrenia and First-Degree Family Members. American Journal of Psychiatry, 2005, 162, 788-790.	7.2	32
69	Reproducibility of 2 <scp>D</scp> <scp>G</scp> lu <scp>CEST</scp> in healthy human volunteers at 7 <scp>T</scp> . Magnetic Resonance in Medicine, 2018, 80, 2033-2039.	3.0	32
70	Network Controllability in Transmodal Cortex Predicts Positive Psychosis Spectrum Symptoms. Biological Psychiatry, 2021, 90, 409-418.	1.3	32
71	Falling risk factors in Parkinson's disease. NeuroRehabilitation, 2005, 20, 169-82.	1.3	31
72	Unirhinal Olfactory Function in Schizophrenia Patients and First-Degree Relatives. Journal of Neuropsychiatry and Clinical Neurosciences, 2006, 18, 389-396.	1.8	30

#	Article	IF	CITATIONS
73	Cannabis use in youth is associated with limited alterations in brain structure. Neuropsychopharmacology, 2019, 44, 1362-1369.	5.4	30
74	Effects of copy number variations on brain structure and risk for psychiatric illness: Largeâ€scale studies from the <scp>ENIGMA</scp> working groups on <scp>CNVs</scp> . Human Brain Mapping, 2022, 43, 300-328.	3.6	30
75	More is less: Emotion induced prefrontal cortex activity habituates in aging. Neurobiology of Aging, 2011, 32, 1634-1650.	3.1	28
76	Development of white matter microstructure and executive functions during childhood and adolescence: a review of diffusion MRI studies. Developmental Cognitive Neuroscience, 2021, 51, 101008.	4.0	27
77	Temporal Lobe Volume Decrements in Psychosis Spectrum Youths. Schizophrenia Bulletin, 2017, 43, sbw112.	4.3	26
78	Accelerated cortical thinning within structural brain networks is associated with irritability in youth. Neuropsychopharmacology, 2019, 44, 2254-2262.	5.4	26
79	Phenylthiocarbamide (PTC) perception in patients with schizophrenia and first-degree family members: Relationship to clinical symptomatology and psychophysical olfactory performance. Schizophrenia Research, 2007, 90, 221-228.	2.0	25
80	Sex differences in estimated brain metabolism in relation to body growth through adolescence. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 524-535.	4.3	25
81	Cestational Age is Dimensionally Associated with Structural Brain Network Abnormalities Across Development. Cerebral Cortex, 2019, 29, 2102-2114.	2.9	25
82	Within-Individual Variability: An Index for Subtle Change in Neurocognition in Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2016, 54, 325-335.	2.6	24
83	Structural and Functional Brain Parameters Related to Cognitive Performance Across Development: Replication and Extension of the Parieto-Frontal Integration Theory in a Single Sample. Cerebral Cortex, 2021, 31, 1444-1463.	2.9	24
84	Neurocognitive Functioning in Patients with 22q11.2 Deletion Syndrome: A Meta-Analytic Review. Behavior Genetics, 2018, 48, 259-270.	2.1	24
85	Functional brain imaging in neuropsychology over the past 25 years Neuropsychology, 2017, 31, 954-971.	1.3	24
86	Smaller Nasal Volumes as Stigmata of Aberrant Neurodevelopment in Schizophrenia. American Journal of Psychiatry, 2004, 161, 2314-2316.	7.2	23
87	Subject-level measurement of local cortical coupling. NeuroImage, 2016, 133, 88-97.	4.2	23
88	Developmental coupling of cerebral blood flow and fMRI fluctuations in youth. Cell Reports, 2022, 38, 110576.	6.4	23
89	Exome Sequence Data From Multigenerational Families Implicate AMPA Receptor Trafficking in Neurocognitive Impairment and Schizophrenia Risk. Schizophrenia Bulletin, 2016, 42, 288-300.	4.3	22
90	A developmental reduction of the excitation:inhibition ratio in association cortex during adolescence. Science Advances, 2022, 8, eabj8750.	10.3	22

#	Article	IF	CITATIONS
91	Phenylthiocarbamide (PTC) Perception in Parkinson Disease. Cognitive and Behavioral Neurology, 2007, 20, 145-148.	0.9	21
92	Neuropsychological Subgroups in Non-Demented Parkinson's Disease: A Latent Class Analysis. Journal of Parkinson's Disease, 2017, 7, 385-395.	2.8	21
93	A Quantitative Meta-analysis of Olfactory Dysfunction in Epilepsy. Neuropsychology Review, 2019, 29, 328-337.	4.9	20
94	Efficient coding in the economics of human brain connectomics. Network Neuroscience, 2022, 6, 234-274.	2.6	18
95	White matter microstructural deficits in 22q11.2 deletion syndrome. Psychiatry Research - Neuroimaging, 2017, 268, 35-44.	1.8	17
96	Determining a Short Form Montreal Cognitive Assessment (s-MoCA) Czech Version: Validity in Mild Cognitive Impairment Parkinson's Disease and Cross-Cultural Comparison. Assessment, 2020, 27, 1960-1970.	3.1	16
97	Structural anomalies of the peripheral olfactory system in psychosis high-risk subjects. Schizophrenia Research, 2018, 195, 197-205.	2.0	15
98	Cognition and community functioning in schizophrenia: The nature of the relationship Journal of Abnormal Psychology, 2018, 127, 216-227.	1.9	15
99	Age, Sex, and Repeated Measures Effects on NASA's "Cognition―Test Battery in STEM Educated Adults. Aerospace Medicine and Human Performance, 2020, 91, 18-25.	0.4	15
100	Control of brain network dynamics across diverse scales of space and time. Physical Review E, 2020, 101, 062301.	2.1	14
101	ASLPrep: a platform for processing of arterial spin labeled MRI and quantification of regional brain perfusion. Nature Methods, 2022, 19, 683-686.	19.0	13
102	The thinner the better: Evidence on the internalization of the slimness ideal in Chinese college students. PsyCh Journal, 2020, 9, 544-552.	1.1	12
103	Why does age of onset predict clinical severity in schizophrenia? A multiplex extended pedigree study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 403-411.	1.7	11
104	Neurocognitive and functional heterogeneity in depressed youth. Neuropsychopharmacology, 2021, 46, 783-790.	5.4	10
105	Diminished reward responsiveness is associated with lower reward network GluCEST: an ultra-high field glutamate imaging study. Molecular Psychiatry, 2021, 26, 2137-2147.	7.9	10
106	Associations between neighborhood socioeconomic status, parental education, and executive system activation in youth. Cerebral Cortex, 2023, 33, 1058-1073.	2.9	10
107	Network controllability mediates the relationship between rigid structure and flexible dynamics. Network Neuroscience, 2022, 6, 275-297.	2.6	9
108	Exome sequences of multiplex, multigenerational families reveal schizophrenia risk loci with potential implications for neurocognitive performance. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 817-827.	1.7	8

#	Article	IF	CITATIONS
109	Faster family-wise error control for neuroimaging with a parametric bootstrap. Biostatistics, 2018, 19, 497-513.	1.5	8
110	Alterations in white matter microstructure in individuals at persistent risk for psychosis. Molecular Psychiatry, 2020, 25, 2441-2454.	7.9	8
111	Development of an itemwise efficiency scoring method: Concurrent, convergent, discriminant, and neuroimaging-based predictive validity assessed in a large community sample Psychological Assessment, 2016, 28, 1529-1542.	1.5	7
112	Mobile footprinting: linking individual distinctiveness in mobility patterns to mood, sleep, and brain functional connectivity. Neuropsychopharmacology, 2022, 47, 1662-1671.	5.4	6
113	Apolipoprotein E Genotype and Odor Identification in Schizophrenia. Journal of Neuropsychiatry and Clinical Neurosciences, 2006, 18, 231-233.	1.8	5
114	Older Adult Normative Data for the Sniffin' Sticks Odor Identification Test. Archives of Clinical Neuropsychology, 2019, 34, 254-258.	0.5	5
115	Regional White Matter Scaling in the Human Brain. Journal of Neuroscience, 2021, 41, 7015-7028.	3.6	5
116	A systematic review and metaâ€analysis of intellectual, neuropsychological, and psychoeducational functioning in neurofibromatosis type 1. American Journal of Medical Genetics, Part A, 2022, 188, 2277-2292.	1.2	5
117	Disrupted anatomic networks in the 22q11.2 deletion syndrome. NeuroImage: Clinical, 2016, 12, 420-428.	2.7	4
118	Structural Brain Patterns Associated with Traumatic Stress Resilience and Susceptibility to Mood and Anxiety Symptoms in Youths. Adversity and Resilience Science, 2020, 1, 179-190.	2.6	4
119	Voxelâ€wise intermodal coupling analysis of two or more modalities using local covariance decomposition. Human Brain Mapping, 2022, 43, 4650-4663.	3.6	4
120	Dataâ€Ðriven Quantitative Susceptibility Mapping Using Loss Adaptive Dipole Inversion (LADI). Journal of Magnetic Resonance Imaging, 2020, 52, 823-835.	3.4	3
121	Pathways to understanding psychosis through rare – 22q11.2DS - and common variants. Current Opinion in Genetics and Development, 2021, 68, 35-40.	3.3	3
122	Meta-analysis of olfactory dysfunction in 22q11.2 deletion syndrome. Psychiatry Research, 2020, 285, 112783.	3.3	2
123	Linking Individual Differences in Personalized Functional Network Topography to Psychopathology in Youth. Biological Psychiatry, 2021, 89, S360.	1.3	2
124	Age-dependent effects of schizophrenia genetic risk on cortical thickness and cortical surface area: Evaluating evidence for neurodevelopmental and neurodegenerative models of schizophrenia , 2022, 131, 674-688.		2
125	Hearing the Signs of Age-Related Cognitive Decline: A Commentary on "Hearing Aid Use Is Associated with Better Mini-Mental State Exam Performance― American Journal of Geriatric Psychiatry, 2016, 24, 703-705.	1.2	1
126	Sex Differences in Functional Topography of Association Networks. Biological Psychiatry, 2021, 89, S178.	1.3	1

#	Article	IF	CITATIONS
127	A Meta-Analytic Synthesis of Glutamate Dysfunction Across the Lifespan: Effects of Age and Neurodevelopmental Neuropsychopathology. Biological Psychiatry, 2021, 89, S161-S162.	1.3	1
128	Altered functional brain dynamics in chromosome 22q11.2 deletion syndrome during facial affect processing. Molecular Psychiatry, 2022, 27, 1158-1166.	7.9	1
129	MON-110 Utilization of GluCEST, a Novel Neuroimaging Technique, to Characterize the Brain Phenotype in Hyperinsulinism/Hyperammonemia Syndrome. Journal of the Endocrine Society, 2020, 4, .	0.2	1
130	Age-dependent patterns of schizophrenia genetic risk affect cognition. Schizophrenia Research, 2022, 246, 39-48.	2.0	1
131	Comparison of two cognitive screening measures in a longitudinal sample of youth at-risk for psychosis. Schizophrenia Research, 2022, 246, 216-224.	2.0	1
132	A commentary on the "Functioning of three attentional networks and vigilance in primary insomnia― Sleep Medicine, 2015, 16, 1567-1568.	1.6	0
133	Progress Toward Elucidating Commonalities in Mental Disorders Using Brain Imaging and Publicly Available Data. JAMA Psychiatry, 2018, 75, 295.	11.0	0
134	33. Discovering Linked Dimensions of Psychopathology and Functional Connectivity. Biological Psychiatry, 2018, 83, S13-S14.	1.3	0
135	Reward Network Glutamate Level is Associated With Dimensional Reward Responsiveness. Biological Psychiatry, 2020, 87, S218-S219.	1.3	0
136	Altered Functional Brain Dynamics During Facial Affect Processing in Chromosome 22q11.2 Deletion Syndrome. Biological Psychiatry, 2020, 87, S140.	1.3	0
137	Multiplex Network Pattern Analysis for Structure-Function Connectivity Coupling in Psychosis Risk. Biological Psychiatry, 2020, 87, S201-S202.	1.3	0
138	General Cognition Shows Age-Dependent Patterns of Genetic Overlap With Schizophrenia Liability. Biological Psychiatry, 2021, 89, S318.	1.3	0
139	Comparing Evidence for Neurodevelopmental and Neurodegenerative Models of Schizophrenia: Do Effects of Schizophrenia Genetic Risk on Cortical Thickness and Cortical Surface Area Vary by Age?. Biological Psychiatry, 2021, 89, S211-S212.	1.3	0
140	P683. Sex Differences in the Functional Topography of Association Networks in Youths. Biological Psychiatry, 2022, 91, S366-S367.	1.3	0
141	P402. Asymmetries in Signal Propagation Across the Cortical Hierarchy Predicts Executive Function in Youth. Biological Psychiatry, 2022, 91, S249-S250.	1.3	0
142	P430. Developmental Refinement of Spontaneous Activity Varies Across Sensorimotor and Association Cortices. Biological Psychiatry, 2022, 91, S261-S262.	1.3	0
143	P82. Hippocampal Glutamate Levels are Associated With Cognitive Performance in Healthy Older Adults: A Novel 7T GluCEST Imaging Study. Biological Psychiatry, 2022, 91, S120.	1.3	0
144	P321. Mapping Glutamate in Functional Cortical Networks. Biological Psychiatry, 2022, 91, S217.	1.3	0