## Olgun Guvench

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/322304/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses. Journal of Chemical Theory and Computation, 2009, 5, 2353-2370.                                                                                                  | 2.3 | 578       |
| 2  | CHARMM Additive All-Atom Force Field for Carbohydrate Derivatives and Its Utility in Polysaccharide<br>and Carbohydrate–Protein Modeling. Journal of Chemical Theory and Computation, 2011, 7, 3162-3180.                                            | 2.3 | 559       |
| 3  | Additive empirical force field for hexopyranose monosaccharides. Journal of Computational Chemistry, 2008, 29, 2543-2564.                                                                                                                            | 1.5 | 483       |
| 4  | Computational Fragment-Based Binding Site Identification by Ligand Competitive Saturation. PLoS<br>Computational Biology, 2009, 5, e1000435.                                                                                                         | 1.5 | 208       |
| 5  | CHARMM Additive All-Atom Force Field for Acyclic Polyalcohols, Acyclic Carbohydrates, and Inositol.<br>Journal of Chemical Theory and Computation, 2009, 5, 1315-1327.                                                                               | 2.3 | 150       |
| 6  | Reproducing Crystal Binding Modes of Ligand Functional Groups Using Site-Identification by Ligand<br>Competitive Saturation (SILCS) Simulations. Journal of Chemical Information and Modeling, 2011, 51,<br>877-896.                                 | 2.5 | 105       |
| 7  | Automated conformational energy fitting for force-field development. Journal of Molecular<br>Modeling, 2008, 14, 667-679.                                                                                                                            | 0.8 | 104       |
| 8  | CHARMM Additive All-Atom Force Field for Phosphate and Sulfate Linked to Carbohydrates. Journal of Chemical Theory and Computation, 2012, 8, 759-776.                                                                                                | 2.3 | 100       |
| 9  | Computational evaluation of protein–small molecule binding. Current Opinion in Structural Biology, 2009, 19, 56-61.                                                                                                                                  | 2.6 | 73        |
| 10 | Identification of Small Molecular Weight Inhibitors of Src Homology 2 Domain-Containing Tyrosine<br>Phosphatase 2 (SHP-2) via in Silico Database Screening Combined with Experimental Assay. Journal of<br>Medicinal Chemistry, 2008, 51, 7396-7404. | 2.9 | 39        |
| 11 | Site Identification by Ligand Competitive Saturation (SILCS) Simulations for Fragment-Based Drug Design. Methods in Molecular Biology, 2015, 1289, 75-87.                                                                                            | 0.4 | 37        |
| 12 | Balancing target flexibility and target denaturation in computational fragmentâ€based inhibitor<br>discovery. Journal of Computational Chemistry, 2012, 33, 1880-1891.                                                                               | 1.5 | 36        |
| 13 | Terminal sialic acids on CD44 N-glycans can block hyaluronan binding by forming competing<br>intramolecular contacts with arginine sidechains. Proteins: Structure, Function and Bioinformatics,<br>2014, 82, 3079-3089.                             | 1.5 | 34        |
| 14 | Quantum Mechanical Analysis of 1,2-Ethanediol Conformational Energetics and Hydrogen Bonding.<br>Journal of Physical Chemistry A, 2006, 110, 9934-9939.                                                                                              | 1.1 | 30        |
| 15 | Mechanism of Binding Site Conformational Switching in the CD44–Hyaluronan Protein–Carbohydrate<br>Binding Interaction. Journal of Molecular Biology, 2011, 406, 631-647.                                                                             | 2.0 | 28        |
| 16 | Revealing the Mechanisms of Protein Disorder and N-Glycosylation in CD44-Hyaluronan Binding Using<br>Molecular Simulation. Frontiers in Immunology, 2015, 6, 305.                                                                                    | 2.2 | 28        |
| 17 | Sulfation and Cation Effects on the Conformational Properties of the Glycan Backbone of Chondroitin Sulfate Disaccharides. Journal of Physical Chemistry B, 2015, 119, 6063-6073.                                                                    | 1.2 | 28        |
| 18 | CD44 Receptor Unfolding Enhances Binding by Freeing Basic Amino Acids to Contact Carbohydrate<br>Ligand, Biophysical Journal, 2013, 105, 1217-1226,                                                                                                  | 0.2 | 21        |

Olgun Guvench

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Peptide Backbone Sampling Convergence with the Adaptive Biasing Force Algorithm. Journal of Physical Chemistry B, 2013, 117, 518-526.                                                                                        | 1.2 | 20        |
| 20 | Computational functional group mapping for drug discovery. Drug Discovery Today, 2016, 21, 1928-1931.                                                                                                                        | 3.2 | 19        |
| 21 | Efficient Construction of Atomic-Resolution Models of Non-Sulfated Chondroitin<br>Glycosaminoglycan Using Molecular Dynamics Data. Biomolecules, 2020, 10, 537.                                                              | 1.8 | 16        |
| 22 | Tyr66 acts as a conformational switch in the closed-to-open transition of the SHP-2 N-SH2-domain phosphotyrosine-peptide binding cleft. BMC Structural Biology, 2007, 7, 14.                                                 | 2.3 | 13        |
| 23 | Constructing 3-Dimensional Atomic-Resolution Models of Nonsulfated Glycosaminoglycans with<br>Arbitrary Lengths Using Conformations from Molecular Dynamics. International Journal of<br>Molecular Sciences, 2020, 21, 7699. | 1.8 | 13        |
| 24 | Sulfation and Calcium Favor Compact Conformations of Chondroitin in Aqueous Solutions. ACS Omega, 2021, 6, 13204-13217.                                                                                                      | 1.6 | 13        |
| 25 | Rigidity and flexibility in the tetrasaccharide linker of proteoglycans from atomicâ€resolution molecular simulation. Journal of Computational Chemistry, 2017, 38, 1438-1446.                                               | 1.5 | 12        |
| 26 | Pyranose Ring Puckering Thermodynamics for Glycan Monosaccharides Associated with Vertebrate<br>Proteins. International Journal of Molecular Sciences, 2022, 23, 473.                                                        | 1.8 | 11        |
| 27 | Folding of Fibroblast Growth Factor 1 Is Critical for Its Nonclassical Release. Biochemistry, 2016, 55, 1159-1167.                                                                                                           | 1.2 | 8         |