Xiaoju Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3222984/publications.pdf Version: 2024-02-01

XIAOUL WANC

#	Article	IF	CITATIONS
1	Injectable thiol-ene hydrogel of galactoglucomannan and cellulose nanocrystals in delivery of therapeutic inorganic ions with embedded bioactive glass nanoparticles. Carbohydrate Polymers, 2022, 276, 118780.	5.1	20
2	Digital light processing (DLP) 3D-fabricated antimicrobial hydrogel with a sustainable resin of methacrylated woody polysaccharides and hybrid silver-lignin nanospheres. Green Chemistry, 2022, 24, 2129-2145.	4.6	27
3	Semi-solid extrusion 3D printing of tailored ChewTs for veterinary use - A focus on spectrophotometric quantification of gabapentin. European Journal of Pharmaceutical Sciences, 2022, 174, 106190.	1.9	13
4	Electrospinning of Electroconductive Water-Resistant Nanofibers of PEDOT–PSS, Cellulose Nanofibrils and PEO: Fabrication, Characterization, and Cytocompatibility. ACS Applied Bio Materials, 2021, 4, 483-493.	2.3	17
5	On Laccase-Catalyzed Polymerization of Biorefinery Lignin Fractions and Alignment of Lignin Nanoparticles on the Nanocellulose Surface <i>via</i> One-Pot Water-Phase Synthesis. ACS Sustainable Chemistry and Engineering, 2021, 9, 8770-8782.	3.2	22
6	Rheological and Printability Assessments on Biomaterial Inks of Nanocellulose/Photo-Crosslinkable Biopolymer in Light-Aided 3D Printing. Frontiers in Chemical Engineering, 2021, 3, .	1.3	11
7	Facile fractionation of bamboo hydrolysate and characterization of isolated lignin and lignin-carbohydrate complexes. Holzforschung, 2021, 75, 399-408.	0.9	5
8	Tailored Thermosetting Wood Adhesive Based on Well-Defined Hardwood Lignin Fractions. ACS Sustainable Chemistry and Engineering, 2020, 8, 13517-13526.	3.2	41
9	3D-Printed Veterinary Dosage Forms—A Comparative Study of Three Semi-Solid Extrusion 3D Printers. Pharmaceutics, 2020, 12, 1239.	2.0	31
10	Effect of micro- and nanofibrillated cellulose on the phase stability of sodium sulfate decahydrate based phase change material. Cellulose, 2020, 27, 5003-5016.	2.4	14
11	Nanocellulose-Based Inks for 3D Bioprinting: Key Aspects in Research Development and Challenging Perspectives in Applications—A Mini Review. Bioengineering, 2020, 7, 40.	1.6	77
12	Enhancement of a zwitterionic chitosan derivative on mechanical properties and antibacterial activity of carboxymethyl cellulose-based films. International Journal of Biological Macromolecules, 2020, 159, 1197-1205.	3.6	25
13	3D Scaffolds of Polycaprolactone/Copper-Doped Bioactive Glass: Architecture Engineering with Additive Manufacturing and Cellular Assessments in a Coculture of Bone Marrow Stem Cells and Endothelial Cells. ACS Biomaterials Science and Engineering, 2019, 5, 4496-4510.	2.6	25
14	Surface Engineered Biomimetic Inks Based on UV Cross-Linkable Wood Biopolymers for 3D Printing. ACS Applied Materials & Interfaces, 2019, 11, 12389-12400.	4.0	65
15	On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. ACS Applied Materials & Interfaces, 2019, 11, 8838-8848.	4.0	189
16	From Biomass to Nanomaterials: A Green Procedure for Preparation of Holistic Bamboo Multifunctional Nanocomposites Based On Formic Acid Rapid Fractionation. ACS Sustainable Chemistry and Engineering, 2019, 7, 6592-6600.	3.2	33
17	Bioactive Glasses. Springer Handbooks, 2019, , 813-849.	0.3	2
18	Novel biorenewable composite of wood polysaccharide and polylactic acid for three dimensional printing. Carbohydrate Polymers, 2018, 187, 51-58.	5.1	83

XIAOJU WANG

#	Article	IF	CITATIONS
19	Three-Dimensional Printing of Wood-Derived Biopolymers: A Review Focused on Biomedical Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 5663-5680.	3.2	183
20	3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. Journal of Materials Chemistry B, 2018, 6, 7066-7075.	2.9	129
21	Dissolution of borate and borosilicate bioactive glasses and the influence of ion (Zn, Cu) doping in different solutions. Journal of Non-Crystalline Solids, 2018, 502, 22-34.	1.5	56
22	Dissolution and mineralization characterization of bioactive glass ceramic containing endodontic sealer Guttaflow Bioseal. Dental Materials Journal, 2018, 37, 988-994.	0.8	24
23	Bioactive glass induced osteogenic differentiation of human adipose stem cells is dependent on cell attachment mechanism and mitogen-activated protein kinases. , 2018, 35, 54-72.		34
24	Do properties of bioactive glasses exhibit mixed alkali behavior?. Journal of Materials Science, 2017, 52, 8986-8997.	1.7	14
25	Dissolution of Bioactive Glasses in Acidic Solutions with the Focus on Lactic Acid. International Journal of Applied Glass Science, 2016, 7, 154-163.	1.0	22
26	Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomaterialia, 2016, 46, 286-298.	4.1	151
27	Anionic Polysaccharides as Templates for the Synthesis of Conducting Polyaniline and as Structural Matrix for Conducting Biocomposites. Macromolecular Rapid Communications, 2013, 34, 1056-1061.	2.0	20
28	Electron-Transfer Studies with a New Flavin Adenine Dinucleotide Dependent Glucose Dehydrogenase and Osmium Polymers of Different Redox Potentials. Analytical Chemistry, 2012, 84, 334-341.	3.2	86
29	Poly(3,4-ethylenedioxythiophene) based enzyme-electrode configuration for enhanced direct electron transfer type biocatalysis of oxygen reduction. Electrochimica Acta, 2012, 68, 25-31.	2.6	14
30	Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes. Biosensors and Bioelectronics, 2012, 31, 219-225.	5.3	159
31	Direct Electron Transfer of <i>Trametes hirsuta</i> Laccase in a Dual-Layer Architecture of Poly(3,4-ethylenedioxythiophene) Films. Journal of Physical Chemistry C, 2011, 115, 5919-5929.	1.5	20
32	Immobilization of Trametes hirsuta laccase into poly(3,4-ethylenedioxythiophene) and polyaniline polymer-matrices. Journal of Power Sources, 2011, 196, 4957-4964.	4.0	23
33	The effect of counter ions and substrate material on the growth and morphology of poly(3,4-ethylenedioxythiophene) films: Towards the application of enzyme electrode construction in biofuel cells. Synthetic Metals, 2010, 160, 1373-1381.	2.1	34
34	The effect of block copolymer EPE1100 on the colloidal stability of Mg–Al LDH dispersions. Journal of Colloid and Interface Science, 2005, 289, 410-418.	5.0	12
35	Synthesis and Characterization of Polyoxyethylene Sulfate Intercalated Mgâ^'Alâ^'Nitrate Layered Double Hydroxide. Langmuir, 2003, 19, 5570-5574.	1.6	86