
Antonio Canedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3222974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cat's medullary reticulospinal and subnucleus reticularis dorsalis noxious neurons form a coupled neural circuit through collaterals of descending axons. Journal of Neurophysiology, 2016, 115, 324-344.	1.8	2
2	Classification of somatosensory stimuli on the basis of the temporal coding at the cuneate nucleus. Neurocomputing, 2015, 151, 62-68.	5.9	0
3	Electrophysiological Study of Supraspinal Input and Spinal Output of Cat's Subnucleus Reticularis Dorsalis (SRD) Neurons. PLoS ONE, 2013, 8, e60686.	2.5	5
4	Intracellular recordings of subnucleus reticularis dorsalis neurones revealed novel electrophysiological properties and windup mechanisms. Journal of Physiology, 2011, 589, 4383-4401.	2.9	5
5	Processing Afferent Proprioceptive Information at the Main Cuneate Nucleus of Anesthetized Cats. Journal of Neuroscience, 2010, 30, 15383-15399.	3.6	38
6	Processing noxious information at the subnucleus reticularis dorsalis (SRD) of anesthetized cats: Wind-up mechanisms. Pain, 2008, 140, 190-208.	4.2	8
7	Information coding in early stages of the somatosensory system. Natural Computing, 2007, 6, 253-267.	3.0	1
8	GABAB receptor-mediated modulation of cutaneous input at the cuneate nucleus in anesthetized cats. Neuroscience, 2006, 137, 1015-1030.	2.3	7
9	Cortical modulation of dorsal column nuclei: A computational study. Journal of Computational Neuroscience, 2006, 21, 21-33.	1.0	5
10	Spatio-temporal information coding in the cuneate nucleus. Neurocomputing, 2006, 69, 1946-1953.	5.9	1
11	Coding Strategies in Early Stages of the Somatosensory System. Lecture Notes in Computer Science, 2005, , 213-222.	1.3	0
12	Intracuneate mechanisms underlying primary afferent cutaneous processing in anaesthetized cats. European Journal of Neuroscience, 2004, 19, 3006-3016.	2.6	17
13	A computational model of cuneothalamic projection neurons. Network: Computation in Neural Systems, 2003, 14, 211-231.	3.6	5
14	New Corticocuneate Cellular Mechanisms Underlying the Modulation of Cutaneous Ascending Transmission in Anesthetized Cats. Journal of Neurophysiology, 2003, 89, 3328-3339.	1.8	38
15	A computational model of cuneothalamic projection neurons. Network: Computation in Neural Systems, 2003, 14, 211-231.	3.6	6
16	Sleep and wakefulness in the cuneate nucleus: a computational study. Lecture Notes in Computer Science, 2003, , 70-77.	1.3	0
17	A computational model of cuneothalamic projection neurons. Network: Computation in Neural Systems, 2003, 14, 211-31.	3.6	1
18	The lemniscal-cuneate recurrent excitation is suppressed by strychnine and enhanced by GABAAantagonists in the anaesthetized cat. European Journal of Neuroscience, 2002, 16, 1697-1704.	2.6	20

ANTONIO CANEDO

#	Article	IF	CITATIONS
19	A Realistic Computational Model of the Local Circuitry of the Cuneate Nucleus. Lecture Notes in Computer Science, 2001, , 21-29.	1.3	Ο
20	Spatial and cortical influences exerted on cuneothalamic and thalamocortical neurons of the cat. European Journal of Neuroscience, 2000, 12, 2515-2533.	2.6	46
21	Lemniscal recurrent and transcortical influences on cuneate neurons. Neuroscience, 2000, 97, 317-334.	2.3	30
22	Sensorimotor Integration at the Dorsal Column Nuclei. Physiology, 1999, 14, 231-237.	3.1	8
23	Cortico-subcortical synchronization in the chloralose-anesthetized cat. Neuroscience, 1999, 93, 409-411.	2.3	7
24	Tonic and bursting activity in the cuneate nucleus of the chloralose-anesthetized cat. Neuroscience, 1998, 84, 603-617.	2.3	47
25	PRIMARY MOTOR CORTEX INFLUENCES ON THE DESCENDING AND ASCENDING SYSTEMS. Progress in Neurobiology, 1997, 51, 287-335.	5.7	227
26	Coupled slow and delta oscillations between cuneothalamic and thalamocortical neurons in the chloralose anesthetized cat. Neuroscience Letters, 1996, 219, 107-110.	2.1	18
27	Caprylic acid, a medium chain saturated fatty acid, inhibits the sodium inward current in neuroglioma (NG108-15) cells. Neuroscience Letters, 1995, 198, 181-184.	2.1	4
28	Pyramidal tract and corticospinal neurons with branching axons to the dorsal column nuclei of the cat. Neuroscience, 1995, 68, 195-206.	2.3	38
29	Pericruciate fibres to the red nucleus and to the medial bulbar reticular formation. Neuroscience, 1994, 62, 115-124.	2.3	21
30	Pyramidal and corticospinal synaptic effects over reticulospinal neurones in the cat Journal of Physiology, 1993, 463, 475-489.	2.9	37
31	Rubrospinal tract of the cat: superposition of antidromic responses and changes in axonal excitability following orthodromic activity. Brain Research, 1989, 502, 28-38.	2.2	8
32	Pattern of pyramidal tract collateralization to medial thalamus, lateral hypothalamus and red nucleus in the cat. Experimental Brain Research, 1986, 61, 585-96.	1.5	11
33	Superposition of antidromic responses in pyramidal tract cell clusters. Experimental Neurology, 1985, 89, 645-658.	4.1	8
34	Subcortical influences upon prefrontal cortex of the cat. Brain Research, 1982, 232, 449-454.	2.2	9
35	Pericruciate cortex unit activity during intentional movement. Effect of subcortical electrical stimulation. Brain Research, 1982, 247, 269-276.	2.2	4
36	Hypothalamic and amygdaloid influences upon sensorimotor cortical neurons. Brain Research, 1978, 158, 223-228.	2.2	9