Fabrice Locment

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3222967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Building Integrated Photovoltaic System With Energy Storage and Smart Grid Communication. IEEE Transactions on Industrial Electronics, 2013, 60, 1607-1618.	5.2	269
2	Intelligent DC Microgrid With Smart Grid Communications: Control Strategy Consideration and Design. IEEE Transactions on Smart Grid, 2012, 3, 2148-2156.	6.2	222
3	Maximum power tracking for photovoltaic power system: Development and experimental comparison of two algorithms. Renewable Energy, 2010, 35, 2381-2387.	4.3	181
4	Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor. Energy Conversion and Management, 2017, 132, 14-27.	4.4	135
5	Building-integrated microgrid: Advanced local energy management for forthcoming smart power grid communication. Energy and Buildings, 2013, 59, 236-243.	3.1	127
6	Experimental analysis of impact of MPPT methods on energy efficiency for photovoltaic power systems. International Journal of Electrical Power and Energy Systems, 2013, 46, 98-107.	3.3	101
7	DC microgrid power flow optimization by multi-layer supervision control. Design and experimental validation. Energy Conversion and Management, 2014, 82, 1-10.	4.4	69
8	Supervision control for optimal energy cost management in DC microgrid: Design and simulation. International Journal of Electrical Power and Energy Systems, 2014, 58, 140-149.	3.3	67
9	Modelling, Simulation, and Management Strategy of an Electric Vehicle Charging Station Based on a DC Microgrid. Applied Sciences (Switzerland), 2020, 10, 2053.	1.3	46
10	Modeling and Simulation of DC Microgrids for Electric Vehicle Charging Stations. Energies, 2015, 8, 4335-4356.	1.6	43
11	Photovoltaic Electricity for Sustainable Building. Efficiency and Energy Cost Reduction for Isolated DC Microgrid. Energies, 2015, 8, 7945-7967.	1.6	40
12	Electromobility framework study: infrastructure and urban planning for EV charging station empowered by PVâ€based microgrid. IET Electrical Systems in Transportation, 2019, 9, 176-185.	1,5	26
13	PV-Powered Electric Vehicle Charging Stations: Preliminary Requirements and Feasibility Conditions. Applied Sciences (Switzerland), 2021, 11, 1770.	1.3	26
14	Optimized Load Shedding Approach for Grid-Connected DC Microgrid Systems under Realistic Constraints. Buildings, 2016, 6, 50.	1.4	21
15	Power Management Strategy for an Autonomous DC Microgrid. Applied Sciences (Switzerland), 2018, 8, 2202.	1.3	20
16	PV-Powered Charging Station for Electric Vehicles: Power Management with Integrated V2G. Applied Sciences (Switzerland), 2020, 10, 6500.	1.3	18
17	PV Benefits Assessment for PV-Powered Charging Stations for Electric Vehicles. Applied Sciences (Switzerland), 2021, 11, 4127.	1.3	18
18	Experimental analysis of impact of maximum power point tracking methods on energy efficiency for smallâ€scale wind energy conversion system. IFT Renewable Power Conversion, 2017, 11, 389-397	1.7	15

FABRICE LOCMENT

#	Article	IF	CITATIONS
19	DC Microgrid System Modeling and Simulation Based on a Specific Algorithm for Grid-Connected and Islanded Modes with Real-Time Demand-Side Management Optimization. Applied Sciences (Switzerland), 2020, 10, 2544.	1.3	14
20	Adaptive-tuning of extended Kalman filter used for small scale wind generator control. Renewable Energy, 2016, 85, 1237-1245.	4.3	12
21	Limited Power Point Tracking for a Small-Scale Wind Turbine Intended to Be Integrated in a DC Microgrid. Applied Sciences (Switzerland), 2020, 10, 8030.	1.3	12
22	Real-Time Power Management Including an Optimization Problem for PV-Powered Electric Vehicle Charging Stations. Applied Sciences (Switzerland), 2022, 12, 4323.	1.3	10
23	Influence of Dynamic Efficiency in the DC Microgrid Power Balance. Energies, 2017, 10, 1563.	1.6	8
24	Experimental comparison of photovoltaic panel operating cell temperature models. , 2014, , .		7
25	Experimental Implementation of a Flexible PV Power Control Mechanism in a DC Microgrid. Energies, 2019, 12, 1233.	1.6	7
26	A Techno-Economic Analysis of Energy Storage Components of Microgrids for Improving Energy Management Strategies. Energies, 2022, 15, 1556.	1.6	7
27	Global Cost and Carbon Impact Assessment Methodology for Electric Vehicles' PV-Powered Charging Station. Applied Sciences (Switzerland), 2022, 12, 4115.	1.3	4
28	Integrated Control for Small Power Wind Generator. Energies, 2018, 11, 1217.	1.6	2
29	On-grid/off-grid DC microgrid optimization and demand response management. , 2020, , .		2
30	Shedding and restoration algorithms for an EV charging station to maximize available power. , 2020, , .		2
31	Power and Energy Management of a DC Microgrid for a Renewable Curtailment Case Due to the Integration of a Small-Scale Wind Turbine. Energies, 2022, 15, 3421.	1.6	2
32	Human-System Interfaces for PV-Powered Electric Vehicles Charging Station. , 2021, , .		1
33	Power Management of a Full DC Microgrid for Building Self-Consumption Applications. Lecture Notes in Electrical Engineering, 2020, , 177-189.	0.3	0
34	Carbon Impact Methodology for PV-powered Infrastructure for Recharging Electric Vehicles. , 2021, , .		0