
N Mariano Correa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3222963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonaqueous Polar Solvents in Reverse Micelle Systems. Chemical Reviews, 2012, 112, 4569-4602.	47.7	228
2	When Is Water Not Water? Exploring Water Confined in Large Reverse Micelles Using a Highly Charged Inorganic Molecular Probe. Journal of the American Chemical Society, 2006, 128, 12758-12765.	13.7	181
3	Kinetics of reactions catalyzed by enzymes in solutions of surfactants. Advances in Colloid and Interface Science, 2008, 136, 1-24.	14.7	153
4	Micropolarity of Reverse Micelles of Aerosol-OT in n-Hexane. Journal of Colloid and Interface Science, 1995, 172, 71-76.	9.4	129
5	What Can You Learn from a Molecular Probe? New Insights on the Behavior of C343 in Homogeneous Solutions and AOT Reverse Micelles. Journal of Physical Chemistry B, 2006, 110, 13050-13061.	2.6	114
6	A Mild and Versatile Method for Palladium-Catalyzed Cross-Coupling of Aryl Halides in Water and Surfactants. European Journal of Organic Chemistry, 2003, 2003, 4080-4086.	2.4	111
7	Properties of AOT Aqueous and Nonaqueous Microemulsions Sensed by Optical Molecular Probes. Langmuir, 2000, 16, 3070-3076.	3.5	106
8	Acidâ^'Base and Aggregation Processes of Acridine Orange Base in n-Heptane/AOT/Water Reverse Micelles. Langmuir, 2002, 18, 2039-2047.	3.5	102
9	Micropolarity of Reversed Micelles: Comparison between Anionic, Cationic, and Nonionic Reversed Micelles. Journal of Colloid and Interface Science, 1996, 184, 570-578.	9.4	86
10	New Insights on the Behavior of PRODAN in Homogeneous Media and in Large Unilamellar Vesicles. Journal of Physical Chemistry B, 2006, 110, 11838-11846.	2.6	85
11	New Insights on the Photophysical Behavior of PRODAN in Anionic and Cationic Reverse Micelles:Â From Which State or States Does It Emit?. Journal of Physical Chemistry B, 2007, 111, 748-759.	2.6	75
12	Cationic Reverse Micelles Create Water with Super Hydrogenâ€Bondâ€Donor Capacity for Enzymatic Catalysis: Hydrolysis of 2â€Naphthyl Acetate by αâ€Chymotrypsin. Chemistry - A European Journal, 2010, 16, 8887-8893.	3.3	75
13	Effect of the Addition of a Nonaqueous Polar Solvent (Glycerol) on Enzymatic Catalysis in Reverse Micelles. Hydrolysis of 2-Naphthyl Acetate by α-Chymotrypsin. Langmuir, 2004, 20, 5732-5737.	3.5	69
14	On the Formation of New Reverse Micelles: A Comparative Study of Benzene/Surfactants/Ionic Liquids Systems Using UVâ^'Visible Absorption Spectroscopy and Dynamic Light Scattering. Langmuir, 2009, 25, 10426-10429.	3.5	67
15	What are the factors that control non-aqueous/AOT/n-heptane reverse micelle sizes? A dynamic light scattering study. Physical Chemistry Chemical Physics, 2009, 11, 11096.	2.8	67
16	A Unique Ionic Liquid with Amphiphilic Properties That Can Form Reverse Micelles and Spontaneous Unilamellar Vesicles. Chemistry - A European Journal, 2012, 18, 15598-15601.	3.3	61
17	An Example of How to Use AOT Reverse Micelle Interfaces to Control a Photoinduced Intramolecular Charge-Transfer Process. Langmuir, 2008, 24, 4637-4646.	3.5	59
18	FTIR and1H NMR Studies of the Solubilization of Pure and Aqueous 1,2-Ethanediol in the Reverse Aggregates of Aerosol-OT. Langmuir, 2000, 16, 5573-5578.	3.5	56

N MARIANO CORREA

#	Article	IF	CITATIONS
19	The use of acridine orange base (AOB) as molecular probe to characterize nonaqueous AOT reverse micelles. Journal of Colloid and Interface Science, 2006, 296, 356-364.	9.4	52
20	Solvent Blends Can Control Cationic Reversed Micellar Interdroplet Interactions. The Effect of <i>n-</i> Heptane:Benzene Mixture on BHDC Reversed Micellar Interfacial Properties: Droplet Sizes and Micropolarity. Journal of Physical Chemistry B, 2011, 115, 12076-12084.	2.6	52
21	Preparation of AgBr Quantum Dots via Electroporation of Vesicles. Journal of the American Chemical Society, 2000, 122, 6432-6434.	13.7	49
22	Real Structure of Formamide Entrapped by AOT Nonaqueous Reverse Micelles:Â FT-IR and1H NMR Studies. Journal of Physical Chemistry B, 2005, 109, 21209-21219.	2.6	48
23	AOT reverse micelles as versatile reaction media for chitosan nanoparticles synthesis. Carbohydrate Polymers, 2017, 171, 85-93.	10.2	48
24	Effect of the Constrained Environment on the Interactions between the Surfactant and Different Polar Solvents Encapsulated within AOT Reverse Micelles. ChemPhysChem, 2009, 10, 2034-2040.	2.1	43
25	Exploratory Study of the Effect of Polar Solvents upon the Partitioning of Solutes in Nonaqueous Reverse Micellar Solutions. Langmuir, 2003, 19, 2067-2071.	3.5	42
26	Binding of Nitrodiphenylamines to Reverse Micelles of AOT inn-Hexane and Carbon Tetrachloride: Solvent and Substituent Effects. Journal of Colloid and Interface Science, 1998, 208, 96-103.	9.4	41
27	Characterization of Multifunctional Reverse Micelles' Interfaces Using Hemicyanines as Molecular Probes. II: Effect of the Surfactant. Journal of Physical Chemistry B, 2009, 113, 6718-6724.	2.6	40
28	Interfacial water with special electron donor properties: Effect of water–surfactant interaction in confined reversed micellar environments and its influence on the coordination chemistry of a copper complex. Journal of Colloid and Interface Science, 2011, 355, 124-130.	9.4	40
29	Influence of Anionic and Cationic Reverse Micelles on Nucleophilic Aromatic Substitution Reaction between 1-Fluoro-2,4-dinitrobenzene and Piperidine. Journal of Organic Chemistry, 2000, 65, 6427-6433.	3.2	39
30	Catalysis in Micellar Media. Kinetics and Mechanism for the Reaction of 1-Fluoro-2,4-dinitrobenzene withn-Butylamine and Piperidine inn-Hexane and AOT/n-Hexane/Water Reverse Micelles. Journal of Organic Chemistry, 1999, 64, 5757-5763.	3.2	38
31	Layered Structure of Roomâ€Temperature Ionic Liquids in Microemulsions by Multinuclear NMR Spectroscopic Studies. Chemistry - A European Journal, 2011, 17, 6837-6846.	3.3	38
32	Enzymatic Hydrolysis of <i>N</i> -Benzoyl- <scp>l</scp> -Tyrosine <i>p</i> -Nitroanilide by α-Chymotrypsin in DMSO-Water/AOT/ <i>n</i> -Heptane Reverse Micelles. A Unique Interfacial Effect on the Enzymatic Activity. Langmuir, 2013, 29, 8245-8254.	3.5	37
33	On the Investigation of the Droplet–Droplet Interactions of Sodium 1,4â€Bis(2â€ethylhexyl) Sulfosuccinate Reverse Micelles upon Changing the External Solvent Composition and Their Impact on Gold Nanoparticle Synthesis. European Journal of Inorganic Chemistry, 2014, 2014, 2095-2102.	2.0	36
34	How the cation 1-butyl-3-methylimidazolium impacts the interaction between the entrapped water and the reverse micelle interface created with an ionic liquid-like surfactant. Soft Matter, 2016, 12, 830-844.	2.7	36
35	Comparison between Two Anionic Reverse Micelle Interfaces: The Role of Water–Surfactant Interactions in Interfacial Properties. ChemPhysChem, 2012, 13, 115-123.	2.1	35
36	Molecular Dynamics Simulation of Water/BHDC Cationic Reverse Micelles. Structural Characterization, Dynamical Properties, and Influence of Solvent on Intermicellar Interactions. Langmuir, 2014, 30, 9643-9653.	3.5	35

#	Article	IF	CITATIONS
37	Binding of nitroanilines to reverse micelles of AOT n-hexane. Journal of Molecular Liquids, 1997, 72, 163-176.	4.9	34
38	Solubilization of Pure and Aqueous 1,2,3-Propanetriol by Reverse Aggregates of Aerosolâ^'OT in Isooctane Probed by FTIR and1H NMR Spectroscopy. Langmuir, 2001, 17, 1847-1852.	3.5	33
39	The effect of different interfaces and confinement on the structure of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide entrapped in cationic and anionic reverse micelles. Physical Chemistry Chemical Physics, 2012, 14, 3460.	2.8	33
40	Ionic Liquids Entrapped in Reverse Micelles as Nanoreactors for Bimolecular Nucleophilic Substitution Reaction. Effect of the Confinement on the Chloride Ion Availability. Langmuir, 2014, 30, 12130-12137.	3.5	33
41	Inhibited Phenol Ionization in Reverse Micelles: Confinement Effect at the Nanometer Scale. ChemPhysChem, 2012, 13, 124-130.	2.1	31
42	PRODAN Dual Emission Feature To Monitor BHDC Interfacial Properties Changes with the External Organic Solvent Composition. Langmuir, 2013, 29, 3556-3566.	3.5	31
43	A New Organized Media: Glycerol: <i>N,N-</i> Dimethylformamide Mixtures/AOT/ <i>n</i> -Heptane Reversed Micelles. The Effect of Confinement on Preferential Solvation. Journal of Physical Chemistry B, 2011, 115, 5894-5902.	2.6	30
44	Role of micellar interface in the synthesis of chitosan nanoparticles formulated by reverse micellar method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124876.	4.7	30
45	On the investigation of the bilayer functionalities of 1,2-di-oleoyl-sn-glycero-3-phosphatidylcholine (DOPC) large unilamellar vesicles using cationic hemicyanines as optical probes: A wavelength-selective fluorescence approach. Journal of Colloid and Interface Science, 2008, 317, 332-345.	9.4	29
46	Substituent Effects on Binding Constants of Carotenoids to n-Heptane/AOT Reverse Micelles. Journal of Colloid and Interface Science, 2001, 240, 573-580.	9.4	28
47	Electrochemistry in AOT Reverse Micelles. A Powerful Technique To Characterize Organized Media. Journal of Physical Chemistry C, 2007, 111, 4269-4276.	3.1	28
48	Reverse Micellar Aggregates:Â Effect on Ketone Reduction. 2. Surfactant Role. Journal of Organic Chemistry, 2004, 69, 8231-8238.	3.2	27
49	Distribution of amines in water/AOT/n-hexane reverse micelles: influence of the amine chemical structure. Journal of Colloid and Interface Science, 2005, 286, 245-252.	9.4	27
50	Electroporation of Unilamellar Vesicles Studied by Using a Pore-Mediated Electron-Transfer Reaction. Langmuir, 1998, 14, 5802-5805.	3.5	26
51	Role of the Medium on the C343 Inter/Intramolecular Hydrogen Bond Interactions. An Absorption, Emission, and 1HNMR Investigation of C343 in Benzene/n-Heptane Mixtures. Journal of Physical Chemistry A, 2010, 114, 7326-7330.	2.5	26
52	More Evidence on the Control of Reverse Micelles Sizes. Combination of Different Techniques as a Powerful Tool to Monitor AOT Reversed Micelles Properties. Journal of Physical Chemistry B, 2013, 117, 3818-3828.	2.6	26
53	The impact of the polar core size and external organic media composition on micelle–micelle interactions: the effect on gold nanoparticle synthesis. New Journal of Chemistry, 2015, 39, 8887-8895.	2.8	26
54	Gold nanoparticles stabilized with sulphonated imidazolium salts in water and reverse micelles. Royal Society Open Science, 2017, 4, 170481.	2.4	26

#	Article	IF	CITATIONS
55	Dynamics of Electroporation of Synthetic Liposomes Studied Using a Pore-Mediated Reaction, Ag++ Br-→ AgBr. Journal of Physical Chemistry B, 1998, 102, 9319-9322.	2.6	25
56	Characterization of Multifunctional Reverse Micelles' Interfaces Using Hemicyanines as Molecular Probes. I. Effect of the Hemicyanines' Structure. Journal of Physical Chemistry B, 2009, 113, 4284-4292.	2.6	25
57	Effect of the Cationic Surfactant Moiety on the Structure of Water Entrapped in Two Catanionic Reverse Micelles Created from Ionic Liquidâ€Like Surfactants. ChemPhysChem, 2014, 15, 3097-3109.	2.1	24
58	Use of Ionic Liquids-like Surfactants for the Generation of Unilamellar Vesicles with Potential Applications in Biomedicine. Langmuir, 2019, 35, 13332-13339.	3.5	23
59	Singularities in the physicochemical properties of spontaneous AOT-BHD unilamellar vesicles in comparison with DOPC vesicles. Physical Chemistry Chemical Physics, 2015, 17, 17112-17121.	2.8	21
60	Unique catanionic vesicles as a potential "Nano-Taxi―for drug delivery systems. In vitro and in vivo biocompatibility evaluation. RSC Advances, 2017, 7, 5372-5380.	3.6	21
61	Reverse Micellar Aggregates:Â Effect on Ketone Reduction. 1. Substrate Role. Journal of Organic Chemistry, 2004, 69, 8224-8230.	3.2	20
62	An Interesting Case Where Water Behaves as a Unique Solvent. 4-Aminophthalimide Emission Profile to Monitor Aqueous Environment. Journal of Physical Chemistry B, 2013, 117, 2160-2168.	2.6	20
63	Electron donor ionic liquids entrapped in anionic and cationic reverse micelles. Effects of the interface on the ionic liquid–surfactant interactions. Physical Chemistry Chemical Physics, 2013, 15, 16746.	2.8	20
64	<i>"Green Electrodesâ€</i> Modified with Au Nanoparticles Synthesized in Glycerol, as Electrochemical Nitrite Sensor. Electroanalysis, 2015, 27, 1883-1891.	2.9	19
65	The use of two non-toxic lipophilic oils to generate environmentally friendly anionic reverse micelles without cosurfactant. Comparison with the behavior found for traditional organic non-polar solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 354-362.	4.7	18
66	A protic ionic liquid, when entrapped in cationic reverse micelles, can be used as a suitable solvent for a bimolecular nucleophilic substitution reaction. Organic and Biomolecular Chemistry, 2016, 14, 3170-3177.	2.8	18
67	On the Possibility That Cyclodextrins' Chiral Cavities Can Be Available on AOT <i>n</i> -Heptane Reverse Micelles. A UVâ^'Visible and Induced Circular Dichroism Study. Journal of Physical Chemistry B, 2007, 111, 10703-10712.	2.6	17
68	How TOPO affects the interface of the novel mixed water/AOT:TOPO/n-heptane reverse micelles: dynamic light scattering and Fourier transform infrared spectroscopy studies. Physical Chemistry Chemical Physics, 2014, 16, 15457-15468.	2.8	17
69	Supramolecular Assemblies Obtained by Mixing Different Cyclodextrins and AOT or BHDC Reverse Micelles. Langmuir, 2014, 30, 3354-3362.	3.5	17
70	Droplet–droplet interactions investigated using a combination of electrochemical and dynamic light scattering techniques. The case of water/BHDC/benzene:n-heptane system. Soft Matter, 2015, 11, 2952-2962.	2.7	17
71	Improvement of the amphiphilic properties of a dialkyl phosphate by creation of a protic ionic liquid-like surfactant. RSC Advances, 2017, 7, 44743-44750.	3.6	17
72	Non-aqueous reverse micelles media for the SNAr reaction between 1-fluoro-2,4-dinitrobenzene and piperidine. Journal of Physical Organic Chemistry, 2006, 19, 805-812.	1.9	16

N MARIANO CORREA

#	Article	IF	CITATIONS
73	An Alternative Approach to Quantify Partition Processes in Confined Environments: The Electrochemical Behavior of PRODAN in Unilamellar Vesicles. ChemPhysChem, 2010, 11, 236-244.	2.1	16
74	Electrochemistry in large unilamellar vesicles. The distribution of 1-naphthol studied by square wave voltammetry. Electrochimica Acta, 2011, 56, 10231-10237.	5.2	16
75	Interfacial properties modulated by the water confinement in reverse micelles created by the ionic liquid-like surfactant bmim-AOT. Soft Matter, 2019, 15, 947-955.	2.7	16
76	Biocompatible Solvents and Ionic Liquid-Based Surfactants as Sustainable Components to Formulate Environmentally Friendly Organized Systems. Polymers, 2021, 13, 1378.	4.5	15
77	Effect of Confinement on the Properties of Sequestered Mixed Polar Solvents: Enzymatic Catalysis in Nonaqueous 1,4â€Bisâ€2â€ethylhexylsulfosuccinate Reverse Micelles. ChemPhysChem, 2016, 17, 1678-1685.	2.1	13
78	Piroxicam-loaded nanostructured lipid carriers gel: Design and characterization by square wave voltammetry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125396.	4.7	13
79	Comparative Study of the Photophysical Behavior of Fisetin in Homogeneous Media and in Anionic and Cationic Reverse Micelles Mediaâ€. Photochemistry and Photobiology, 2007, 83, 486-493.	2.5	12
80	How the Type of Cosurfactant Impacts Strongly on the Size and Interfacial Composition in Gemini 12-2-12 RMs Explored by DLS, SLS, and FTIR Techniques. Journal of Physical Chemistry B, 2016, 120, 467-476.	2.6	12
81	Influence of the AOT Counterion Chemical Structure on the Generation of Organized Systems. Langmuir, 2020, 36, 10785-10793.	3.5	12
82	Characterization of different reverse micelle interfaces using the reaction of 4-fluoro-3-nitrobenzoate with piperidine. Journal of Physical Organic Chemistry, 2005, 18, 121-127.	1.9	11
83	Combination of a protic ionic liquid-like surfactant and biocompatible solvents to generate environmentally friendly anionic reverse micelles. New Journal of Chemistry, 2019, 43, 10398-10404.	2.8	11
84	Catanionic nanocarriers as a potential vehicle for insulin delivery. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110759.	5.0	11
85	Water-soluble gold nanoparticles: recyclable catalysts for the reduction of aromatic nitro compounds in water. RSC Advances, 2020, 10, 15065-15071.	3.6	11
86	The hydrolysis of phenyl trifluoroacetate in AOT/n-heptane RMs as a sensor of the encapsulated water structure. RSC Advances, 2015, 5, 34878-34884.	3.6	10
87	On the characterization of NaDEHP/n-heptane nonaqueous reverse micelles: the effect of the polar solvent. Physical Chemistry Chemical Physics, 2015, 17, 7002-7011.	2.8	10
88	Micropolarity and Hydrogenâ€Bond Donor Ability of Environmentally Friendly Anionic Reverse Micelles Explored by UV/Vis Absorption of a Molecular Probe and FTIR Spectroscopy. ChemPhysChem, 2018, 19, 759-765.	2.1	10
89	Study of lipid peroxidation and ascorbic acid protective role in large unilamellar vesicles from a new electrochemical performance. Bioelectrochemistry, 2018, 120, 120-126.	4.6	10
90	Structural Characterization of Biocompatible Reverse Micelles Using Small-Angle X-ray Scattering, ³¹ P Nuclear Magnetic Resonance, and Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 4366-4375.	2.6	10

#	Article	IF	CITATIONS
91	Nanoscale Control Over Interfacial Properties in Mixed Reverse Micelles Formulated by Using Sodium 1,4â€bisâ€2â€ethylhexylsulfosuccinate and Triâ€ <i>n</i> â€octyl Phosphine Oxide Surfactants. ChemPhysChem, 2016, 17, 2407-2414.	2.1	9
92	Binding of o-nitroaniline to nonaqueous AOT reverse micelles. Arkivoc, 2011, 2011, 369-379.	0.5	9
93	Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform. Beilstein Journal of Nanotechnology, 2016, 7, 655-663.	2.8	8
94	Spontaneous catanionic vesicles formed by the interaction between an anionic Î ² -cyclodextrins derivative and a cationic surfactant. RSC Advances, 2018, 8, 12535-12539.	3.6	8
95	Gold Nanoparticles Stabilized by Sulfonated″midazolium Salts as Promising Catalyst in Water. ChemistrySelect, 2019, 4, 13496-13502.	1.5	8
96	Determining the substrate permeability through the bilayer of large unilamellar vesicles of DOPC. A kinetic study. RSC Advances, 2016, 6, 62594-62601.	3.6	7
97	Properties of AOT reverse micelle interfaces with different polar solvents. Journal of Physical Organic Chemistry, 2016, 29, 580-585.	1.9	7
98	Determination of Benzyl-hexadecyldimethylammonium 1,4-Bis(2-ethylhexyl)sulfosuccinate Vesicle Permeability by Using Square Wave Voltammetry and an Enzymatic Reaction. Langmuir, 2017, 33, 12080-12086.	3.5	7
99	Modified reverse micelle method as facile way to obtain several gold nanoparticle morphologies. Journal of Molecular Liquids, 2021, 331, 115709.	4.9	7
100	C343 behavior in benzene/AOT reverse micelles. The role of the dye solubilization in the non-polar organic pseudophase. Dyes and Pigments, 2012, 95, 290-295.	3.7	6
101	Square Wave Voltammetry: An Alternative Technique to Determinate Piroxicam Release Profiles from Nanostructured Lipid Carriers. ChemPhysChem, 2016, 17, 2322-2328.	2.1	6
102	Subtleties of catanionic surfactant reverse micelle assemblies revealed by a fluorescent molecular probe. Methods and Applications in Fluorescence, 2017, 5, 044001.	2.3	6
103	Supramolecular Systems as an Alternative for Enzymatic Degradation of 1â€Naphthyl Methylcarbamate (Carbaryl) Pesticide. ChemistrySelect, 2019, 4, 7204-7210.	1.5	6
104	Interfacial Dynamics and Its Relations with "Negative―Surface Viscosities Measured at Water–Air Interfaces Covered with a Cationic Surfactant. Langmuir, 2019, 35, 8333-8343.	3.5	6
105	Catanionic Reverse Micelles as an Optimal Microenvironment To Alter the Water Electron Donor Capacity in a S _N 2 Reaction. Journal of Organic Chemistry, 2019, 84, 1185-1191.	3.2	6
106	Imim-DEHP reverse micelles investigated with two molecular probes reveals how are the interfacial properties and the coordination behavior of the surfactant. Journal of Molecular Liquids, 2020, 313, 113592.	4.9	6
107	Amphiphilic ionic liquids as sustainable components to formulate promising vesicles to be used in nanomedicine. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100382.	5.9	6
108	A Kinetic Study of the Photodynamic Effect on Tryptophan Methyl Ester and Tryptophan Octyl Ester in DOPC Vesicles. Photochemistry and Photobiology, 2010, 86, 96-103.	2.5	5

#	Article	IF	CITATIONS
109	Electrochemical and photophysical behavior of 1-naphthol in benzyl-n-hexadecyldimethylammonium 1,4-bis(2-ethylhexyl)sulfosuccinate large unilamellar vesicles. Physical Chemistry Chemical Physics, 2016, 18, 15645-15653.	2.8	5
110	Non-aqueous reverse micelles created with a cationic surfactant: Encapsulating ethylene glycol in BHDC/non-polar solvent blends. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 467-473.	4.7	5
111	On the design of a versatile ionic liquid, AOBH-DEHP, which can be used as a new molecular probe to investigate supramolecular assemblies. Dyes and Pigments, 2017, 138, 68-76.	3.7	5
112	Polyclonal antibody production anti Pc_312-324 peptide. Its potential use in electrochemical immunosensors for transgenic soybean detection. Bioelectrochemistry, 2020, 131, 107397.	4.6	5
113	Spontaneous formation of unilamellar vesicles based on the surfactant 1-methylimidazolium bis-(2-ethylhexyl) phosphate, evaluated as a function of pH and in saline solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125435.	4.7	5
114	Probing the microenvironment of unimicelles constituted of amphiphilic hyperbranched polyethyleneimine using 1-methyl-8-oxyquinolinium betaine. Physical Chemistry Chemical Physics, 2014, 16, 13458-13464.	2.8	4
115	Characterization of a label system formed by large unilamellar vesicles for its potential use in the design of electrochemical biosensors. Microchemical Journal, 2018, 140, 105-113.	4.5	4
116	Vehiculization of noscapine in large unilamellar vesicles. Study of its protective role against lipid peroxidation by electrochemical techniques. Journal of Electroanalytical Chemistry, 2019, 833, 26-32.	3.8	4
117	How the external solvent in biocompatible reverse micelles can improve the alkaline phosphatase behavior. Organic and Biomolecular Chemistry, 2021, 19, 4969-4977.	2.8	4
118	A simple electrochemical immunosensor for sensitive detection of transgenic soybean protein CP4-EPSPS in seeds. Talanta, 2022, 237, 122910.	5.5	4
119	Monitoring the microenvironment inside polymeric micelles using the fluorescence probe 6-propionyl-2-dimethylaminonaphthalene (PRODAN). Journal of Molecular Liquids, 2021, 343, 117552.	4.9	4
120	Understanding Metallic Nanoparticles Stabilization in Water by Imidazolium Salts: A Complete Physicochemical Study. ChemistrySelect, 2020, 5, 11264-11271.	1.5	3
121	New Insights into the Catalytic Activity and Reusability of Waterâ€Soluble Silver Nanoparticles. ChemistrySelect, 2021, 6, 7436-7442.	1.5	3
122	Is it Necessary for the Use of Fluorinated Compounds to Formulate Reverse Micelles in a Supercritical Fluid? Searching the Best Cosurfactant to Create "Green―AOT Reverse Micelle Media. Langmuir, 2021, 37, 445-453.	3.5	3
123	Reply to "Comment on â€~An Interesting Case Where Water Behaves as a Unique Solvent. 4-Aminophthalimide Emission Profile to Monitor Aqueous Environment'― Journal of Physical Chemistry B, 2013, 117, 5389-5391.	2.6	2
124	Electrochemical Methodology as an Useful Tool for the Interfacial Characterization of Aqueous Reverse Micelles. ChemistrySelect, 2019, 4, 14309-14314.	1.5	2
125	Piroxicamâ€Loaded Nanostructured Lipid Nanocarriers Modified with Salicylic Acid: The Effect on Drug Release. ChemistrySelect, 2020, 5, 804-809.	1.5	2
126	Binding Constant of Amines to Water/AOT/n-Hexene Reverse Micelles. Influence of the Chemical Structure. Molecules, 2000, 5, 512-513.	3.8	1

#	Article	IF	CITATIONS
127	The Use of AOBHâ€ÐEHP Molecular Probe to Characterize BHDC Reverse Micelles Interfaces. Insights on the Interfacial Water Structure. ChemistrySelect, 2017, 2, 2880-2887.	1.5	1
128	Spectroscopic characterization and general features of piroxicam encapsulated in nanostructured lipid carriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126340.	4.7	1
129	On the Investigation of the Droplet–Droplet Interactions of Sodium 1,4â€Bis(2â€ethylhexyl) Sulfosuccinate Reverse Micelles upon Changing the External Solvent Composition and Their Impact on Gold Nanoparticle Synthesis (Eur. J. Inorg. Chem. 27/2014). European Journal of Inorganic Chemistry, 2014. 2014	2.0	0
130	Noscapineâ€Loaded Nanostructured Lipid Carriers as a Potential Topical Delivery to Bovine Mastitis Treatment. ChemistrySelect, 2020, 5, 5922-5927.	1.5	0
131	Deciphering Solvation Effects in Aqueous Binary Mixtures by Fluorescence Behavior of 4-Aminophthalimide: The Comparison Between Ionic Liquids and Alcohols as Cosolvents. Journal of Physical Chemistry B, 2021, 125, 13203-13211.	2.6	0