
Angeles Calatayud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3222893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Nutritional Quality Potential of Microgreens, Baby Leaves, and Adult Lettuce: An Underexploited Nutraceutical Source. Foods, 2022, 11, 423.	1.9	23
2	Postharvest Changes in the Nutritional Properties of Commercial and Traditional Lettuce Varieties in Relation with Overall Visual Quality. Agronomy, 2022, 12, 403.	1.3	6
3	Phenotypic Divergence among Sweet Pepper Landraces Assessed by Agro-Morphological Characterization as a Biodiversity Source. Agronomy, 2022, 12, 632.	1.3	1
4	Improving Bell Pepper Crop Performance and Fruit Quality under Suboptimal Calcium Conditions by Grafting onto Tolerant Rootstocks. Agronomy, 2022, 12, 1644.	1.3	1
5	Bioactive Compounds and Antioxidant Capacity of Valencian Pepper Landraces. Molecules, 2021, 26, 1031.	1.7	13
6	Grafting Enhances Pepper Water Stress Tolerance by Improving Photosynthesis and Antioxidant Defense Systems. Antioxidants, 2021, 10, 576.	2.2	12
7	Uncovering salt tolerance mechanisms in pepper plants: a physiological and transcriptomic approach. BMC Plant Biology, 2021, 21, 169.	1.6	11
8	Editorial: Chlorophyll Fluorescence Imaging Analysis in Biotic and Abiotic Stress. Frontiers in Plant Science, 2021, 12, 658500.	1.7	38
9	Phenotyping Local Eggplant Varieties: Commitment to Biodiversity and Nutritional Quality Preservation. Frontiers in Plant Science, 2021, 12, 696272.	1.7	15
10	Suitable rootstocks can alleviate the effects of heat stress on pepper plants. Scientia Horticulturae, 2021, 290, 110529.	1.7	12
11	Multidisciplinary approach to describe Trebouxia diversity within lichenized fungi Buellia zoharyi from the Canary Islands. Symbiosis, 2020, 82, 19-34.	1.2	11
12	Adaptation to Water and Salt Stresses of Solanum pimpinellifolium and Solanum lycopersicum var. cerasiforme. Agronomy, 2020, 10, 1169.	1.3	14
13	Grafting onto an Appropriate Rootstock Reduces the Impact on Yield and Quality of Controlled Deficit Irrigated Pepper Crops. Agronomy, 2020, 10, 1529.	1.3	9
14	Effect of Grafting on the Production, Physico-Chemical Characteristics and Nutritional Quality of Fruit from Pepper Landraces. Antioxidants, 2020, 9, 501.	2.2	16
15	Main Root Adaptations in Pepper Germplasm (Capsicum spp.) to Phosphorus Low-Input Conditions. Agronomy, 2020, 10, 637.	1.3	5
16	Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative. Agronomy, 2020, 10, 651.	1.3	27
17	Physiological characterization of a pepper hybrid rootstock designed to cope with salinity stress. Plant Physiology and Biochemistry, 2020, 148, 207-219.	2.8	18
18	Pepper Rootstock and Scion Physiological Responses Under Drought Stress. Frontiers in Plant Science, 2019, 10, 38.	1.7	47

ANGELES CALATAYUD

#	Article	IF	CITATIONS
19	Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species. Photosynthetica, 2017, 55, 671-678.	0.9	3
20	Grafting pepper onto tolerant rootstocks: An environmental-friendly technique overcome water and salt stress. Scientia Horticulturae, 2017, 226, 33-41.	1.7	50
21	Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research, 2017, 132, 13-66.	1.6	419
22	Ascorbic Acid Alleviates Water Stress in Young Peach Trees and Improves Their Performance after Rewatering. Frontiers in Plant Science, 2017, 8, 1627.	1.7	19
23	Physiological changes of pepper accessions in response to salinity and water stress. Spanish Journal of Agricultural Research, 2017, 15, e0804.	0.3	19
24	Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of Plant Physiology, 2016, 193, 1-11.	1.6	88
25	Strategies to Avoid Salinity and Hydric Stress of Pepper Grafted Plants. Procedia Environmental Sciences, 2015, 29, 211-212.	1.3	2
26	Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science, 2015, 230, 12-22.	1.7	55
27	Evaluation of some pepper genotypes as rootstocks in water stress conditions. Zahradnictvi (Prague,) Tj ETQq1	1 0,78431	4 rgBT /Overl 27
28	The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics. Frontiers in Plant Science, 2014, 5, 2.	1.7	49
29	Rootstock alleviates PEC-induced water stress in grafted pepper seedlings: Physiological responses. Journal of Plant Physiology, 2014, 171, 842-851.	1.6	51
30	Non-invasive tools to estimate stress-induced changes in photosynthetic performance in plants inhabiting Mediterranean areas. Environmental and Experimental Botany, 2014, 103, 42-52.	2.0	58
31	Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynthesis Research, 2014, 122, 121-158.	1.6	585
32	Use of chlorophyll fluorescence imaging as diagnostic technique to predict compatibility in melon graft. Scientia Horticulturae, 2013, 149, 13-18.	1.7	24
33	EFFECT OF DIFFERENT ROOTSTOCKS ON GROWTH, CHLOROPHYLL <i>A</i> FLUORESCENCE AND MINERAL COMPOSITION OF TWO GRAFTED SCIONS OF TOMATO. Journal of Plant Nutrition, 2013, 36, 825-835.	0.9	19
34	Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Horticulturae, 2012, 138, 24-35.	1.7	230
35	Effects of simple and double grafting melon plants on mineral absorption, photosynthesis, biomass and yield. Scientia Horticulturae, 2011, 130, 575-580.	1.7	31
36	Optimization of Nutrition in Soilless Systems: A Review. Advances in Botanical Research, 2010, 53, 193-245.	0.5	42

ANGELES CALATAYUD

#	Article	IF	CITATIONS
37	Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants. Environmental and Experimental Botany, 2008, 64, 65-74.	2.0	55
38	Physiological effects of pruning in rose plants cv. Grand Gala. Scientia Horticulturae, 2008, 116, 73-79.	1.7	15
39	COMPARING MINERAL UPTAKE EFFICIENCIES IN ROSE PLANT FLOWERING FLUSHES UNDER TWO CLIMATE CONDITIONS. Acta Horticulturae, 2008, , 1135-1142.	0.1	0
40	SHORT-TERM NITRATE UPTAKE RATES FOR SOILLESS CULTURE: SEASONAL EMPIRICAL RELATIONSHIPS FOR ROSE CROP PRODUCTION. Acta Horticulturae, 2008, , 1129-1134.	0.1	0
41	Chlorophyll <i>a</i> fluorescence as indicator of atmospheric pollutant effects. Toxicological and Environmental Chemistry, 2007, 89, 627-639.	0.6	6
42	Light acclimation in rose (Rosa hybrida cv. Grand Gala) leaves after pruning: Effects on chlorophyll a fluorescence, nitrate reductase, ammonium and carbohydrates. Scientia Horticulturae, 2007, 111, 152-159.	1.7	23
43	Spatial-temporal variations inÂrose leaves under water stress conditions studied byÂchlorophyll fluorescence imaging. Plant Physiology and Biochemistry, 2006, 44, 564-573.	2.8	129
44	Interactions between nitrogen fertilization and ozone in watermelon cultivar Reina de Corazones in open-top chambers. Effects on chlorophyll a fluorescence, lipid peroxidation, and yield. Photosynthetica, 2006, 44, 93-101.	0.9	13
45	Effects of long-term ozone exposure on citrus: Chlorophyll a fluorescence and gas exchange. Photosynthetica, 2006, 44, 548-554.	0.9	27
46	Responses ofÂcitrus plants toÂozone: leaf biochemistry, antioxidant mechanisms andÂlipid peroxidation. Plant Physiology and Biochemistry, 2006, 44, 125-131.	2.8	63
47	Chlorophyll a fluorescence in transplants of Parmelia sulcata Taylor near a power station (La Robla,) Tj ETQq1 1 (0.784314	rgBJ /Overloc
48	Response of Spinach Leaves (Spinacia oleracea L.) to Ozone Measured by Gas Exchange, Chlorophyll a Fluorescence, Antioxidant Systems, and Lipid Peroxidation. Photosynthetica, 2004, 42, 23-29.	0.9	55
49	Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiology and Biochemistry, 2004, 42, 549-555.	2.8	126
50	Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation. Plant Physiology and Biochemistry, 2003, 41, 839-845.	2.8	87
51	Differences in ozone sensitivity in three varieties of cabbage (Brassica oleracea L.) in the rural Mediterranean area. Journal of Plant Physiology, 2002, 159, 863-868.	1.6	32
52	Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiologia Plantarum, 2002, 116, 308-316.	2.6	79
53	Similar Effects of Ozone on Four Cultivars of Lettuce in Open Top Chambers During Winter. Photosynthetica, 2002, 40, 195-200.	0.9	12
54	Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environmental Pollution, 2001, 115, 283-289.	3.7	127

ANGELES CALATAYUD

#	Article	IF	CITATIONS
55	A new method to isolate lichen algae by using percoll® gradient centrifugation. Lichenologist, 2001, 33, 361-366.	0.5	8
56	Changes in Chlorophyll a Fluorescence, Lipid Peroxidation, and Detoxificant System in Potato Plants Grown under Filtered and Non-Filtered Air in Open-Top Chambers. Photosynthetica, 2001, 39, 507-513.	0.9	10
57	Chlorophyll a Fluorescence Emission, Xanthophyll Cycle Activity, and Net Photosynthetic Rate Responses to Ozone in Some Foliose and Fruticose Lichen Species. Photosynthetica, 2000, 38, 281-286.	0.9	19
58	Foliar Spraying with Zineb Increases Fruit Productivity and Alleviates Oxidative Stress in Two Tomato Cultivars. Photosynthetica, 2000, 38, 149-154.	0.9	12
59	Acclimation Potential to High Irradiance of Two Cultivars of Watermelon. Biologia Plantarum, 2000, 43, 387-391.	1.9	5
60	Simultaneous Determination ofl-Ascorbic Acid, Glutathione, and Their Oxidized Forms in Ozone-Exposed Vascular Plants by Capillary Zone Electrophoresis. Environmental Science & Technology, 2000, 34, 1331-1336.	4.6	19
61	Effects of SO2 fumigations on photosynthetic CO2 gas exchange, chlorophyll a fluorescence emission and antioxidant enzymes in the lichens Evernia prunastri and Ramalina farinacea. Physiologia Plantarum, 1999, 105, 648-654.	2.6	56
62	Effects of ascorbate feeding on chlorophyll fluorescence and xanthophyll cycle components in the lichen Parmelia quercina (Willd.) Vainio exposed to atmospheric pollutants. Physiologia Plantarum, 1999, 105, 679-684.	2.6	39
63	Changes in Water Economy in Relation to Anatomical and Morphological Characteristics During Thallus Development in Parmelia Acetabulum. Lichenologist, 1999, 31, 375-387.	0.5	15
64	Changes in Water Economy in Relation to Anatomical and Morphological Characteristics During Thallus Development in Parmelia Acetabulum. Lichenologist, 1999, 31, 375.	0.5	13
65	Changes in net photosynthesis, chlorophyll fluorescence and xanthophyll cycle interconversions during freeze-thaw cycles in the Mediterranean moss Leucodon sciuroides. Oecologia, 1999, 120, 499-505.	0.9	22
66	Determination ofl-Ascorbic Acid and Total Ascorbic Acid in Vascular and Nonvascular Plants by Capillary Zone Electrophoresis. Analytical Biochemistry, 1998, 265, 275-281.	1.1	34
67	Changes in chlorophyll a fluorescence, photosynthetic CO 2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts. Planta, 1998, 207, 224-228.	1.6	82
68	Water relations, chlorophyll fluorescence, and membrane permeability during desiccation in bryophytes from xeric, mesic, and hydric environments. Canadian Journal of Botany, 1998, 76, 1923-1929.	1.2	31
69	Changes in in vivo chlorophyll fluorescence quenching in lichen thalli as a function of water content and suggestion of zeaxanthin-associated photoprotection. Physiologia Plantarum, 1997, 101, 93-102.	2.6	71
70	Chlorophyll A Fluorescence and Chlorophyll Content in Parmelia Quercina Thalli from a Polluted Region of Northern Castellon (Spain). Lichenologist, 1996, 28, 49.	0.5	0
71	Hexacyanoferrate (III) stimulation of elongation in coleoptile segments fromZea mays L Protoplasma, 1995, 184, 63-71.	1.0	12
72	Effects of calmodulin antagonists on auxin-stimulated proton extrusion in Avena sativa coleoptile segments. Physiologia Plantarum, 1993, 87, 68-76.	2.6	9

13

#	Article	IF	CITATIONS
73	1-Naphthyl Acetate-Dependent Medium Acidification by Zea mays L. Coleoptile Segments. Plant Physiology, 1991, 95, 1174-1180.	2.3	1

Pepper Crop under Climate Change: Grafting as an Environmental Friendly Strategy. , 0, , .