Ulrich Valcourt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3222525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGF-Î ² and the Smad Signaling Pathway Support Transcriptomic Reprogramming during Epithelial-Mesenchymal Cell Transition. Molecular Biology of the Cell, 2005, 16, 1987-2002.	2.1	530
2	Transforming growth factor-β employs HMGA2 to elicit epithelial–mesenchymal transition. Journal of Cell Biology, 2006, 174, 175-183.	5.2	457
3	ld2 and Id3 Define the Potency of Cell Proliferation and Differentiation Responses to Transforming Growth Factor β and Bone Morphogenetic Protein. Molecular and Cellular Biology, 2004, 24, 4241-4254.	2.3	318
4	The Fibrillar Collagen Family. International Journal of Molecular Sciences, 2010, 11, 407-426.	4.1	231
5	Non-enzymatic Glycation of Bone Collagen Modifies Osteoclastic Activity and Differentiation. Journal of Biological Chemistry, 2007, 282, 5691-5703.	3.4	165
6	Nuclear Factor YY1 Inhibits Transforming Growth Factor β- and Bone Morphogenetic Protein-Induced Cell Differentiation. Molecular and Cellular Biology, 2003, 23, 4494-4510.	2.3	153
7	Functions of Transforming Growth Factor-β Family Type I Receptors and Smad Proteins in the Hypertrophic Maturation and Osteoblastic Differentiation of Chondrocytes. Journal of Biological Chemistry, 2002, 277, 33545-33558.	3.4	116
8	Tenascin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-β. Journal of Cell Biology, 2014, 205, 409-428.	5.2	80
9	Tenascin-X: beyond the architectural function. Cell Adhesion and Migration, 2015, 9, 154-165.	2.7	79
10	Different Effects of Bone Morphogenetic Proteins 2, 4, 12, and 13 on the Expression of Cartilage and Bone Markers in the MC615 Chondrocyte Cell Line. Experimental Cell Research, 1999, 251, 264-274.	2.6	69
11	Demosponge and Sea Anemone Fibrillar Collagen Diversity Reveals the Early Emergence of A/C Clades and the Maintenance of the Modular Structure of Type V/XI Collagens from Sponge to Human. Journal of Biological Chemistry, 2008, 283, 28226-28235.	3.4	55
12	Mechanism of a Transcriptional Cross Talk between Transforming Growth Factor-β–regulated Smad3 and Smad4 Proteins and Orphan Nuclear Receptor Hepatocyte Nuclear Factor-4. Molecular Biology of the Cell, 2003, 14, 1279-1294.	2.1	49
13	Isolation and Culture of Mouse Primary Pancreatic Acinar Cells. Journal of Visualized Experiments, 2013, , .	0.3	49
14	Acinar-to-Ductal Metaplasia Induced by Transforming Growth Factor Beta Facilitates KRAS G12D -driven Pancreatic Tumorigenesis. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 263-282.	4.5	46
15	Alternative splicing of type II procollagen pre-mRNA in chondrocytes is oppositely regulated by BMP-2 and TGF-β1. FEBS Letters, 2003, 545, 115-119.	2.8	45
16	Stroma Involvement in Pancreatic Ductal Adenocarcinoma: An Overview Focusing on Extracellular Matrix Proteins. Frontiers in Immunology, 2021, 12, 612271.	4.8	40
17	Functional role of Meox2 during the epithelial cytostatic response to TGF-β. Molecular Oncology, 2007, 1, 55-71.	4.6	35
18	Tif1γ Suppresses Murine Pancreatic Tumoral Transformation by a Smad4-Independent Pathway. American Journal of Pathology, 2012, 180, 2214-2221.	3.8	32

ULRICH VALCOURT

#	Article	IF	CITATIONS
19	The human <i>NUPR1/P8</i> gene is transcriptionally activated by transforming growth factor β via the SMAD signalling pathway. Biochemical Journal, 2012, 445, 285-293.	3.7	29
20	Proteolytic control of TGF-β co-receptor activity by BMP-1/tolloid-like proteases revealed by quantitative iTRAQ proteomics. Cellular and Molecular Life Sciences, 2015, 72, 1009-1027.	5.4	27
21	TIF1Î ³ Suppresses Tumor Progression by Regulating Mitotic Checkpoints and Chromosomal Stability. Cancer Research, 2015, 75, 4335-4350.	0.9	27
22	Knockdown of the Intraflagellar Transport Protein IFT46 Stimulates Selective Gene Expression in Mouse Chondrocytes and Affects Early Development in Zebrafish. Journal of Biological Chemistry, 2007, 282, 30960-30973.	3.4	25
23	Loss of Tenascin-X expression during tumor progression: A new pan-cancer marker. Matrix Biology Plus, 2020, 6-7, 100021.	3.5	25
24	Analysis of Epithelial–Mesenchymal Transition Induced by Transforming Growth Factor β. Methods in Molecular Biology, 2016, 1344, 147-181.	0.9	23
25	BMP-1 disrupts cell adhesion and enhances TGF-β activation through cleavage of the matricellular protein thrombospondin-1. Science Signaling, 2020, 13, .	3.6	21
26	Latent TCF-Î ² Activation Is a Hallmark of the Tenascin Family. Frontiers in Immunology, 2021, 12, 613438.	4.8	20
27	BMP Signaling in Osteogenesis, Bone Remodeling and Repair. European Journal of Trauma and Emergency Surgery, 2005, 31, 464-479.	0.3	16
28	The conditional expression of KRASG12D in mouse pancreas induces disorganization of endocrine islets prior the onset of ductal pre-cancerous lesions. Pancreatology, 2013, 13, 191-195.	1.1	4
29	Generation of an Fsp1 (fibroblastâ€specific protein 1)â€Flpo transgenic mouse strain. Genesis, 2020, 58, e23359.	1.6	4
30	Development of thymic tumor in [LSL:KrasG12D; Pdx1-CRE] mice, an adverse effect associated with accelerated pancreatic carcinogenesis. Scientific Reports, 2021, 11, 15075.	3.3	2
31	TGF-β as Tumor Suppressor: Lessons from Mouse Models. , 2013, , 139-168.		2
32	Generation of a conditional Flpo/FRT mouse model expressing constitutively active TGFβ in fibroblasts. Scientific Reports, 2020, 10, 3880.	3.3	1
33	TGF-Î ² as Tumor Suppressor: In Vitro Mechanistic Aspects of Growth Inhibition. , 2013, , 113-138.		1
34	TGF-Î ² and Smad Signaling in Transcriptome Reprogramming During EMT. , 2008, , 259-273.		1

3