Victor Norris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3221696/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Challenges in Discovering Drugs That Target the Protein–Protein Interactions of Disordered Proteins. International Journal of Molecular Sciences, 2022, 23, 1550.	1.8	16
2	A Defective Viral Particle Approach to COVID-19. Cells, 2022, 11, 302.	1.8	5
3	Hypothesis: nucleoid-associated proteins segregate with a parental DNA strand to generate coherent phenotypic diversity. Theory in Biosciences, 2021, 140, 17-25.	0.6	3
4	Generation of Bacterial Diversity by Segregation of DNA Strands. Frontiers in Microbiology, 2021, 12, 550856.	1.5	4
5	Role of Multifunctional Cytoskeletal Filaments in Coronaviridae Infections: Therapeutic Opportunities for COVID-19 in a Nutshell. Cells, 2021, 10, 1818.	1.8	3
6	Competitive Coherence Generates Qualia in Bacteria and Other Living Systems. Biology, 2021, 10, 1034.	1.3	1
7	Emergence of a "Cyclosome―in a Primitive Network Capable of Building "Infinite―Proteins. Life, 2019, 9 51.	⁾ , 1.1	10
8	Successive Paradigm Shifts in the Bacterial Cell Cycle and Related Subjects. Life, 2019, 9, 27.	1.1	1
9	Does the Semiconservative Nature of DNA Replication Facilitate Coherent Phenotypic Diversity?. Journal of Bacteriology, 2019, 201, .	1.0	7
10	Plant Accommodation to Their Environment: The Role of Specific Forms of Memory. Signaling and Communication in Plants, 2018, , 131-137.	0.5	1
11	Multiple links connect central carbon metabolism to DNA replication initiation and elongation in <i>Bacillus subtilis</i> . DNA Research, 2018, 25, 641-653.	1.5	17
12	Division-Based, Growth Rate Diversity in Bacteria. Frontiers in Microbiology, 2018, 9, 849.	1.5	29
13	A pension fund for European scientists. EMBO Reports, 2017, 18, 349-350.	2.0	0
14	Synthetic, Switchable Enzymes. Journal of Molecular Microbiology and Biotechnology, 2017, 27, 117-127.	1.0	419
15	My Recollections of Bob Pritchard 1986–96. , 2017, , 127-130.		0
16	Hybolites Revisited. Recent Patents on Anti-infective Drug Discovery, 2016, 11, 16-31.	0.5	1
17	Combining combing and secondary ion mass spectrometry to study DNA on chips using 13C and 15N labeling. F1000Research, 2016, 5, 1437.	0.8	4
18	Why do bacteria divide?. Frontiers in Microbiology, 2015, 06, 322.	1.5	9

#	Article	IF	CITATIONS
19	The membrane: transertion as an organizing principle in membrane heterogeneity. Frontiers in Microbiology, 2015, 6, 572.	1.5	52
20	The theater management model of plant memory. Plant Signaling and Behavior, 2015, 10, e976157.	1.2	1
21	Molecular complementarity between simple, universal molecules and ions limited phenotype space in the precursors of cells. Biology Direct, 2015, 10, 28.	1.9	18
22	Modeling of sensing potency of cytoskeletal systems decorated with metabolic enzymes. Journal of Theoretical Biology, 2015, 365, 190-196.	0.8	4
23	The Positive Feedback Advantages of Combining Buying and Investing. Theoretical Economics Letters, 2015, 05, 659-669.	0.2	4
24	What Properties of Life Are Universal? Substance-Free, Scale-free Life. Origins of Life and Evolution of Biospheres, 2014, 44, 363-367.	0.8	3
25	New approaches to the problem of generating coherent, reproducible phenotypes. Theory in Biosciences, 2014, 133, 47-61.	0.6	8
26	Moonlighting Function of the Tubulin Cytoskeleton: Macromolecular Architectures in the Cytoplasm. Springer Series in Biophysics, 2014, , 165-178.	0.4	0
27	Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor. BMC Biochemistry, 2013, 14, 3.	4.4	28
28	Scientific Globish: clear enough is good enough. Trends in Microbiology, 2013, 21, 503-504.	3.5	3
29	Hypothesis: Bacteria Control Host Appetites. Journal of Bacteriology, 2013, 195, 411-416.	1.0	58
30	Plasmids as scribbling pads for operon formation and propagation. Research in Microbiology, 2013, 164, 779-787.	1.0	11
31	Chromosome Replication in Escherichia coli: Life on the Scales. Life, 2012, 2, 286-312.	1.1	15
32	The Mimic Chain Reaction. Journal of Molecular Microbiology and Biotechnology, 2012, 22, 335-343.	1.0	2
33	Membrane heterogeneity created by transertion is a global regulator in bacteria. Current Opinion in Microbiology, 2012, 15, 724-730.	2.3	26
34	How did Metabolism and Genetic Replication Get Married?. Origins of Life and Evolution of Biospheres, 2012, 42, 487-495.	0.8	13
35	Hyperstructure interactions influence the virulence of the type 3 secretion system in yersiniae and other bacteria. Applied Microbiology and Biotechnology, 2012, 96, 23-36.	1.7	6
36	Modelling Biological Systems with Competitive Coherence. Advances in Artificial Neural Systems, 2012, 2012, 1-20.	1.0	11

#	Article	IF	CITATIONS
37	The Role of Calcium in the Recall of Stored Morphogenetic Information by Plants. Acta Biotheoretica, 2012, 60, 83-97.	0.7	10
38	Combed Single DNA Molecules Imaged by Secondary Ion Mass Spectrometry. Analytical Chemistry, 2011, 83, 6940-6947.	3.2	27
39	Speculations on the initiation of chromosome replication in Escherichia coli: The dualism hypothesis. Medical Hypotheses, 2011, 76, 706-716.	0.8	12
40	Relationship between Fork Progression and Initiation of Chromosome Replication in E. coli. , 2011, , .		0
41	DNA Movies and Panspermia. Life, 2011, 1, 9-18.	1.1	1
42	Computing with bacterial constituents, cells and populations: from bioputing to bactoputing. Theory in Biosciences, 2011, 130, 211-228.	0.6	12
43	The Eukaryotic Cell Originated in the Integration and Redistribution of Hyperstructures from Communities of Prokaryotic Cells Based on Molecular Complementarity. International Journal of Molecular Sciences, 2009, 10, 2611-2632.	1.8	11
44	Secretion of MMP-2 and MMP-9 induced by VEGF autocrine loop correlates with clinical features in childhood acute lymphoblastic leukemia. Leukemia Research, 2009, 33, 407-417.	0.4	24
45	Lipoplex nanostructures reveal a general self-organization of nucleic acids. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 385-394.	1.1	20
46	Hypothesis: Poly-(R)-3-hydroxybutyrate is a major factor in intraocular pressure. Medical Hypotheses, 2009, 73, 398-401.	0.8	10
47	Memorization of Abiotic Stimuli in Plants: A Complex Role for Calcium. Signaling and Communication in Plants, 2009, , 267-283.	0.5	11
48	Hybolites: Novel Therapeutic Tools for Targeting Hyperstructures in Bacteria. Recent Patents on Anti-infective Drug Discovery, 2009, 4, 90-95.	0.5	3
49	Chemical Microscopy of Biological Samples by Dynamic Mode Secondary Ion Mass Spectrometry (SIMS). Methods in Molecular Biology, 2009, 522, 163-173.	0.4	6
50	Inner membrane lipids of Escherichia coli form domains. Colloids and Surfaces B: Biointerfaces, 2008, 63, 306-310.	2.5	18
51	A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency. BMC Systems Biology, 2008, 2, 27.	3.0	30
52	Method for Macromolecular Colocalization Using Atomic Recombination in Dynamic SIMS. Journal of Physical Chemistry B, 2008, 112, 5534-5546.	1.2	17
53	Pharmacological Evidence for Calcium Involvement in the Long-Term Processing of Abiotic Stimuli in Plants. Plant Signaling and Behavior, 2007, 2, 212-220.	1.2	11
54	Functional Taxonomy of Bacterial Hyperstructures. Microbiology and Molecular Biology Reviews, 2007, 71, 230-253.	2.9	79

#	Article	IF	CITATIONS
55	Behaviour of bacterial division protein FtsZ under a monolayer with phospholipid domains. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2812-2821.	1.4	6
56	Toward a Hyperstructure Taxonomy. Annual Review of Microbiology, 2007, 61, 309-329.	2.9	63
57	Lipid domain boundaries as prebiotic catalysts of peptide bond formation. Journal of Theoretical Biology, 2007, 246, 176-185.	0.8	21
58	Lipid composition of membranes ofEscherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. Rapid Communications in Mass Spectrometry, 2007, 21, 1721-1728.	0.7	142
59	Identification and relative quantification of fatty acids in <i>Escherichia coli</i> membranes by gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 3229-3233.	0.7	49
60	The correlation between architecture and mRNA abundance in the genetic regulatory network of Escherichia coli. BMC Systems Biology, 2007, 1, 30.	3.0	8
61	Question 7: The First Units of Life Were Not Simple Cells. Origins of Life and Evolution of Biospheres, 2007, 37, 429-432.	0.8	20
62	Steady-state kinetic behaviour of two- or n-enzyme systems made of free sequential enzymes involved in a metabolic pathway. Comptes Rendus - Biologies, 2006, 329, 963-966.	0.1	4
63	Steady-state kinetic behaviour of functioning-dependent structures. FEBS Journal, 2006, 273, 4287-4299.	2.2	22
64	Hypotheses and the regulation of the bacterial cell cycle. Molecular Microbiology, 2006, 15, 785-787.	1.2	6
65	Compositional complementarity and prebiotic ecology in the origin of life. BioEssays, 2006, 28, 399-412.	1.2	93
66	On the utility of scale-free networks. BioEssays, 2006, 28, 563-564.	1.2	3
67	Memory Processes in the Response of Plants to Environmental Signals. Plant Signaling and Behavior, 2006, 1, 9-14.	1.2	25
68	Modelling Bacterial Hyperstructures with Cellular Automata. , 2006, , 147-156.		3
69	Hypercomplexity. Acta Biotheoretica, 2005, 53, 313-330.	0.7	12
70	Hypothesis: Chemotaxis in <i>Escherichia coli</i> Results from Hyperstructure Dynamics. Journal of Molecular Microbiology and Biotechnology, 2005, 10, 1-14.	1.0	11
71	A hyperstructure approach to mitochondria. Molecular Microbiology, 2004, 53, 41-53.	1.2	7
72	A Logical (Discrete) Formulation for the Storage and Recall of Environmental Signals in Plants. Plant Biology, 2004, 6, 590-597.	1.8	14

#	Article	IF	CITATIONS
73	Plant sensitivity to low intensity 105 GHz electromagnetic radiation. Bioelectromagnetics, 2004, 25, 403-407.	0.9	46
74	Ion condensation and signal transduction. BioEssays, 2004, 26, 549-557.	1.2	40
75	Introduction to the concept of functioning-dependent structures in living cells. Comptes Rendus - Biologies, 2004, 327, 1017-1024.	0.1	12
76	Reticulated hyaluronan hydrogels: a model for examining cancer cell invasion in 3D. Matrix Biology, 2004, 23, 183-193.	1.5	56
77	A hypothesis to explain division site selection inEscherichia coliby combining nucleoid occlusion and Min. FEBS Letters, 2004, 561, 3-10.	1.3	34
78	A strand-specific model for chromosome segregation in bacteria. Molecular Microbiology, 2003, 49, 895-903.	1.2	44
79	Networks as constrained thermodynamic systems. Comptes Rendus - Biologies, 2003, 326, 65-74.	0.1	5
80	Biological processes in organised media. Comptes Rendus - Biologies, 2003, 326, 149-159.	0.1	7
81	Modelling autocatalytic networks with artificial microbiology. Comptes Rendus - Biologies, 2003, 326, 459-466.	0.1	4
82	SIMS STUDY OF THE CALCIUM-DEPRIVATION STEP RELATED TO EPIDERMAL MERISTEM PRODUCTION INDUCED IN FLAX BY COLD SHOCK OR RADIATION FROM A GSM TELEPHONE. Instrumentation Science and Technology, 2002, 20, 611-623.	0.8	36
83	Hypothesis: A Phospholipid Translocase Couples Lateral and Transverse Bilayer Asymmetries in Dividing Bacteria. Journal of Molecular Biology, 2002, 318, 455-462.	2.0	9
84	Quasi-periodic behaviour in a model for the lithium-induced, electrical oscillations of frog skin. Comptes Rendus - Biologies, 2002, 325, 917-925.	0.1	0
85	Hypothesis: hyperstructures regulate initiation in Escherichia coli and other bacteria. Biochimie, 2002, 84, 341-347.	1.3	22
86	Supracriticality and the prion. Molecular Microbiology, 2002, 28, 859-860.	1.2	3
87	Hyperstructures, genome analysis and I-cells. Acta Biotheoretica, 2002, 50, 357-373.	0.7	16
88	Hypothesis: Membrane domains and hyperstructures control bacterial division. Biochimie, 2001, 83, 91-97.	1.3	31
89	Chromosome separation and segregation in dinoflagellates andbacteria may depend on liquid crystalline states. Biochimie, 2001, 83, 187-192.	1.3	63
90	Division in bacteria is determined by hyperstructure dynamics and membrane domains. Journal of Biological Physics and Chemistry, 2001, 01, 29-37.	0.1	9

#	Article	IF	CITATIONS
91	Submolecular Structures in Dipalmytoylphosphatidylethanolamine Langmuir–Blodgett Films Observed by Scanning Force Microscopy. Journal of Colloid and Interface Science, 2000, 227, 585-587.	5.0	5
92	Long-distance transport, storage and recall of morphogenetic information in plants. The existence of a sort of primitive plant â€~memory'. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De I Vie, 2000, 323, 81-91.	La0.8	27
93	The mechanical advantages of DNA. BioSystems, 1999, 49, 71-78.	0.9	14
94	Metabolite-induced metabolons: the activation of transporter-enzyme complexes by substrate binding. Molecular Microbiology, 1999, 31, 1592-1595.	1.2	26
95	Effects of glucocorticoids and mineralocorticoids on proliferation and maturation of human peripheral blood stem cells. , 1999, 62, 65-73.		18
96	Hypothesis: Hyperstructures regulate bacterial structure and the cell cycle. Biochimie, 1999, 81, 915-920.	1.3	37
97	Rapid growth mutants of Escherichia coli. Acta Biotheoretica, 1998, 46, 161-166.	0.7	0
98	A mechanical approach to the distribution and orientation of genes on genetic maps. Molecular Microbiology, 1998, 27, 236-237.	1.2	2
99	Modelling Escherichia coli. The concept of competitive coherence. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 1998, 321, 777-787.	0.8	9
100	Tyrosine phosphorylation in Escherichia coli. Journal of Molecular Biology, 1998, 279, 1045-1051.	2.0	60
101	The universal stress protein, UspA, of Escherichia coli is phosphorylated in response to stasis. Journal of Molecular Biology, 1997, 274, 318-324.	2.0	94
102	Hypothèse : le modèle du lieu de rencontre pour la maladie des prions. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 1997, 320, 393-398.	0.8	0
103	Do bacteria sing? Sonic intercellular communication between bacteria may reflect electromagnetic intracellular communication involving coherent collective vibrational modes that could integrate enzyme activities and gene expression. Molecular Microbiology, 1997, 24, 879-880.	1.2	36
104	Antiviruses as Therapeutic Agents: A Mathematical Analysis of Their Potential. Journal of Theoretical Biology, 1997, 184, 111-116.	0.8	3
105	The Escherichia coli enzoskeleton. Molecular Microbiology, 1996, 19, 197-204.	1.2	57
106	Elements of a unifying theory of biology. Acta Biotheoretica, 1996, 44, 209-218.	0.7	5
107	Hypothesis: chromosome separation in Escherichia coli involves autocatalytic gene expression, transertion and membrane-domain formation. Molecular Microbiology, 1995, 16, 1051-1057.	1.2	85
108	Hypothesis: transcriptional sensing and membrane-domain formation initiate chromosome replication in Escherichia coli. Molecular Microbiology, 1995, 15, 985-987.	1.2	20

#	Article	IF	CITATIONS
109	Characterization of eukaryotic-like kinase activity inEscherichia coliusing the gene-protein database. FEMS Microbiology Letters, 1995, 127, 133-138.	0.7	6
110	Relationships between proteasomes and RNA. Molecular Biology Reports, 1995, 21, 43-47.	1.0	15
111	Autocatalytic Gene Expression OccursviaTransertion and Membrane Domain Formation and Underlies Differentiation in Bacteria: A Model. Journal of Molecular Biology, 1995, 253, 739-748.	2.0	65
112	Sequestration of Origins of Chromosome Replication in Escherichia coli by Lipid Compartments: The Pocket Hypothesis. Journal of Theoretical Biology, 1993, 164, 239-244.	0.8	6
113	Designer antiviruses for HIV. Trends in Microbiology, 1993, 1, 355-357.	3.5	1
114	Deformations in the Cytoplasmic Membrane of Escherichia coli Direct the Repair of Peptidoglycan. , 1993, , 375-384.		2
115	Phospholipid domains determine the spatial organization of the Escherichia coli cell cycle: the membrane tectonics model. Journal of Theoretical Biology, 1992, 154, 91-107.	0.8	43
116	DNA replication in Escherichia coli is initiated by membrane detachment of oriC. Journal of Molecular Biology, 1990, 215, 67-71.	2.0	26
117	Phospholipid flip-out controls the cell cycle of Escherichia coli. Journal of Theoretical Biology, 1989, 139, 117-128.	0.8	29
118	Restriction map of Tn7. Plasmid, 1983, 10, 96-99.	0.4	38