List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3221507/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Acute and chronic Q fever national surveillance – United States, 2008–2017. Zoonoses and Public<br>Health, 2022, 69, 73-82.                                                                              | 0.9 | 6         |
| 2  | HISTOLOGIC LESIONS IN PLACENTAS OF NORTHERN FUR SEALS (CALLORHINUS URSINUS) FROM A POPULATION WITH HIGH PLACENTAL PREVALENCE OF COXIELLA BURNETII. Journal of Wildlife Diseases, 2022, 58, .             | 0.3 | 0         |
| 3  | Association Between Serological Responses to Two Zoonotic Ruminant Pathogens and Esophageal<br>Squamous Cell Carcinoma. Vector-Borne and Zoonotic Diseases, 2021, 21, 125-127.                           | 0.6 | 1         |
| 4  | Comparison of three <i>Coxiella burnetii</i> infectious routes in mice. Virulence, 2021, 12, 2562-2570.                                                                                                  | 1.8 | 4         |
| 5  | Q Fever: A Troubling Disease and a Challenging Diagnosis. Clinical Microbiology Newsletter, 2021, 43, 109-118.                                                                                           | 0.4 | 6         |
| 6  | Coxiella burnetii infections in mice: Immunological responses to contemporary genotypes found in the US. Virulence, 2021, 12, 2461-2473.                                                                 | 1.8 | 1         |
| 7  | Prevalence of serum antibodies to <i>Coxiella burnetii</i> in Alaska Native Persons from the Pribilof<br>Islands. Zoonoses and Public Health, 2020, 67, 89-92.                                           | 0.9 | 6         |
| 8  | Trends in Alpha-gal Allergy Diagnostic Testing in the United States, 2010–2018. Journal of Allergy and Clinical Immunology, 2020, 145, AB144.                                                            | 1.5 | 0         |
| 9  | Pediatric Q Fever. Current Infectious Disease Reports, 2020, 22, 1.                                                                                                                                      | 1.3 | 13        |
| 10 | Human Seroprevalence to 11 Zoonotic Pathogens in the U.S. Arctic, Alaska. Vector-Borne and Zoonotic<br>Diseases, 2019, 19, 563-575.                                                                      | 0.6 | 18        |
| 11 | The Effect of pH on Antibiotic Efficacy against Coxiella burnetii in Axenic Media. Scientific Reports, 2019, 9, 18132.                                                                                   | 1.6 | 18        |
| 12 | Trends in Q fever serologic testing by immunofluorescence from four large reference laboratories in the United States, 2012–2016. Scientific Reports, 2018, 8, 16670.                                    | 1.6 | 9         |
| 13 | Acute Q Fever Case Detection among Acute Febrile Illness Patients, Thailand, 2002–2005. American<br>Journal of Tropical Medicine and Hygiene, 2018, 98, 252-257.                                         | 0.6 | 10        |
| 14 | Seroprevalence of <i>Coxiella burnetii</i> Antibodies among Ruminants and Occupationally Exposed<br>People in Thailand, 2012–2013. American Journal of Tropical Medicine and Hygiene, 2017, 96, 16-0336. | 0.6 | 13        |
| 15 | Coxiella burnetii antibody seropositivity is not a risk factor for AIDS-related non-Hodgkin lymphoma.<br>Blood, 2017, 129, 3262-3264.                                                                    | 0.6 | 4         |
| 16 | Phylogenetic inference of Coxiella burnetii by 16S rRNA gene sequencing. PLoS ONE, 2017, 12, e0189910.                                                                                                   | 1.1 | 10        |
| 17 | Prevalence and Risk Factors of Coxiella burnetii Antibodies in Bulk Milk from Cattle, Sheep, and Goats in Jordan. Journal of Food Protection, 2017, 80, 561-566.                                         | 0.8 | 12        |
| 18 | Genotyping and Axenic Growth of <i>Coxiella burnetii</i> Isolates Found in the United States Environment. Vector-Borne and Zoonotic Diseases, 2016. 16. 588-594.                                         | 0.6 | 24        |

| #  | Article                                                                                                                                                                                                                                | lF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Coxiella burnetii Infection in a Community Operating a Large-Scale Cow and Goat Dairy, Missouri, 2013.<br>American Journal of Tropical Medicine and Hygiene, 2016, 94, 525-531.                                                        | 0.6  | 9         |
| 20 | Development of a TaqMan Array Card for Acute-Febrile-Illness Outbreak Investigation and Surveillance of Emerging Pathogens, Including Ebola Virus. Journal of Clinical Microbiology, 2016, 54, 49-58.                                  | 1.8  | 95        |
| 21 | Massive dispersal of Coxiella burnetii among cattle across the United States. Microbial Genomics, 2016, 2, e000068.                                                                                                                    | 1.0  | 12        |
| 22 | Epizootiological investigation of a Q fever outbreak and implications for future control strategies.<br>Journal of the American Veterinary Medical Association, 2015, 247, 1379-1386.                                                  | 0.2  | 16        |
| 23 | Early cytokine and antibody responses against Coxiella burnetii in aerosol infection of BALB/c mice.<br>Diagnostic Microbiology and Infectious Disease, 2015, 81, 234-239.                                                             | 0.8  | 17        |
| 24 | Serological Evidence of Coxiella burnetii Infection in Cattle and Goats in Bangladesh. EcoHealth, 2015, 12, 354-358.                                                                                                                   | 0.9  | 11        |
| 25 | Coxiella burnetii exposure in northern sea otters Enhydra lutris kenyoni. Diseases of Aquatic<br>Organisms, 2015, 114, 83-87.                                                                                                          | 0.5  | 6         |
| 26 | <i>Brucella</i> placentitis and seroprevalence in northern fur seals ( <i>Callorhinus ursinus</i> ) of<br>the Pribilof Islands, Alaska. Journal of Veterinary Diagnostic Investigation, 2014, 26, 507-512.                             | 0.5  | 60        |
| 27 | High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk. BMC<br>Microbiology, 2014, 14, 41.                                                                                                         | 1.3  | 49        |
| 28 | First Reported Multistate Human Q Fever Outbreak in the United States, 2011. Vector-Borne and Zoonotic Diseases, 2014, 14, 111-117.                                                                                                    | 0.6  | 28        |
| 29 | Antimicrobial therapies for Q fever. Expert Review of Anti-Infective Therapy, 2013, 11, 1207-1214.                                                                                                                                     | 2.0  | 72        |
| 30 | Stability of <i><scp>C</scp>oxiella burnetii</i> in stored human blood. Transfusion, 2013, 53, 1493-1496.                                                                                                                              | 0.8  | 15        |
| 31 | Coxiella burnetii in Northern Fur Seals and Steller Sea Lions of Alaska. Journal of Wildlife Diseases, 2013, 49, 441-446.                                                                                                              | 0.3  | 17        |
| 32 | When Outgroups Fail; Phylogenomics of Rooting the Emerging Pathogen, Coxiella burnetii. Systematic<br>Biology, 2013, 62, 752-762.                                                                                                      | 2.7  | 45        |
| 33 | Long-Term Immune Responses to Coxiella burnetii after Vaccination. Vaccine Journal, 2013, 20, 129-133.                                                                                                                                 | 3.2  | 31        |
| 34 | Presence and Persistence of Coxiella burnetii in the Environments of Goat Farms Associated with a Q<br>Fever Outbreak. Applied and Environmental Microbiology, 2013, 79, 1697-1703.                                                    | 1.4  | 90        |
| 35 | Survey of laboratory animal technicians in the United States for Coxiella burnetii antibodies and<br>exploration of risk factors for exposure. Journal of the American Association for Laboratory Animal<br>Science, 2013, 52, 725-31. | 0.6  | 5         |
| 36 | Diagnosis and management of Q feverUnited States, 2013: recommendations from CDC and the Q Fever<br>Working Group. MMWR Recommendations and Reports, 2013, 62, 1-30.                                                                   | 26.7 | 157       |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Coxiella burnetii Infection of Marine Mammals in the Pacific Northwest, 1997–2010. Journal of<br>Wildlife Diseases, 2012, 48, 201-206.                                                        | 0.3 | 36        |
| 38 | <i>Coxiella burnetii</i> in Northern Fur Seal ( <i>Callorhinus ursinus</i> ) Placentas from St. Paul<br>Island, Alaska. Vector-Borne and Zoonotic Diseases, 2012, 12, 192-195.                | 0.6 | 32        |
| 39 | Human seroreactivity against Bartonella species in the Democratic Republic of Congo. Asian Pacific<br>Journal of Tropical Medicine, 2011, 4, 320-322.                                         | 0.4 | 13        |
| 40 | Rapid Typing of Coxiella burnetii. PLoS ONE, 2011, 6, e26201.                                                                                                                                 | 1.1 | 76        |
| 41 | Q Fever, Spotted Fever Group, and Typhus Group Rickettsioses Among Hospitalized Febrile Patients in<br>Northern Tanzania. Clinical Infectious Diseases, 2011, 53, e8-e15.                     | 2.9 | 104       |
| 42 | Virulence of Pathogenic <i>Coxiella burnetii</i> Strains After Growth in the Absence of Host Cells.<br>Vector-Borne and Zoonotic Diseases, 2011, 11, 1433-1438.                               | 0.6 | 41        |
| 43 | Presence of <i>Coxiella burnetii</i> DNA in the Environment of the United States, 2006 to 2008.<br>Applied and Environmental Microbiology, 2010, 76, 4469-4475.                               | 1.4 | 86        |
| 44 | Coxiella burnetii Infection of a Steller Sea Lion ( Eumetopias jubatus ) Found in Washington State.<br>Journal of Clinical Microbiology, 2010, 48, 3428-3431.                                 | 1.8 | 41        |
| 45 | Practical Method for Extraction of PCR-Quality DNA from Environmental Soil Samples. Applied and Environmental Microbiology, 2010, 76, 4571-4573.                                              | 1.4 | 33        |
| 46 | Opposing regulation of T cell function by Egrâ€1/NAB2 and Egrâ€2/Egrâ€3. European Journal of Immunology,<br>2008, 38, 528-536.                                                                | 1.6 | 96        |
| 47 | MAP kinase phosphatase activity sets the threshold for thymocyte positive selection. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16257-16262. | 3.3 | 22        |
| 48 | E Proteins Enforce Security Checkpoints in the Thymus. Immunity, 2007, 27, 827-829.                                                                                                           | 6.6 | 0         |
| 49 | Murine pregnancy leads to reduced proliferation of maternal thymocytes and decreased thymic emigration. Immunology, 2007, 121, 207-215.                                                       | 2.0 | 82        |
| 50 | Interplay between RORγt, Egr3, and E Proteins Controls Proliferation in Response to Pre-TCR Signals.<br>Immunity, 2006, 24, 813-826.                                                          | 6.6 | 98        |
| 51 | The dual specificity phosphatase transcriptome of the murine thymus. Molecular Immunology, 2006,<br>43, 754-762.                                                                              | 1.0 | 35        |
| 52 | Early Growth Response Gene 1 Provides Negative Feedback to Inhibit Entry of Progenitor Cells into the<br>Thymus. Journal of Immunology, 2006, 176, 4740-4747.                                 | 0.4 | 15        |
| 53 | Estrogen Induces Thymic Atrophy by Eliminating Early Thymic Progenitors and Inhibiting Proliferation of β-Selected Thymocytes. Journal of Immunology, 2006, 176, 7371-7378.                   | 0.4 | 122       |
| 54 | Early Growth Response-1 Is Required for CD154 Transcription. Journal of Immunology, 2006, 176, 811-818.                                                                                       | 0.4 | 26        |

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Control of Recent Thymic Emigrant Survival by Positive Selection Signals and Early Growth Response<br>Gene 1. Journal of Immunology, 2005, 175, 2270-2277.                                                                                              | 0.4  | 20        |
| 56 | An IL-7-dependent rebound in thymic T cell output contributes to the bone loss induced by estrogen<br>deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102,<br>16735-16740.                           | 3.3  | 119       |
| 57 | Regulation of Bim by TCR Signals in CD4/CD8 Double-Positive Thymocytes. Journal of Immunology, 2005, 175, 1532-1539.                                                                                                                                    | 0.4  | 25        |
| 58 | Sustained Early Growth Response Gene 3 Expression Inhibits the Survival of CD4/CD8 Double-Positive Thymocytes. Journal of Immunology, 2004, 173, 340-348.                                                                                               | 0.4  | 34        |
| 59 | Early Growth Response Gene 3 Regulates Thymocyte Proliferation during the Transition from CD4â^'CD8â^' to CD4+CD8+1. Journal of Immunology, 2004, 172, 964-971.                                                                                         | 0.4  | 45        |
| 60 | Transcriptional Control of Thymocyte Positive Selection. Immunologic Research, 2004, 29, 125-138.                                                                                                                                                       | 1.3  | 6         |
| 61 | Homeostatic Proliferation of a Qa-1b-Restricted T Cell: A Distinction between the Ligands Required for<br>Positive Selection and for Proliferation in Lymphopenic Hosts. Journal of Immunology, 2004, 173,<br>6065-6071.                                | 0.4  | 10        |
| 62 | T cell stimulation in the absence of exogenous antigen: a T cell signal is induced by both<br>MHC-dependent and -independent mechanisms. European Journal of Immunology, 2003, 33, 3109-3116.                                                           | 1.6  | 5         |
| 63 | Induction of the Early Growth Response Gene 1 Promoter by TCR Agonists and Partial Agonists: Ligand<br>Potency Is Related to Sustained Phosphorylation of Extracellular Signal-Related Kinase Substrates.<br>Journal of Immunology, 2003, 170, 315-324. | 0.4  | 22        |
| 64 | Thymocyte Development in Early Growth Response Gene 1-Deficient Mice. Journal of Immunology, 2002, 169, 1713-1720.                                                                                                                                      | 0.4  | 89        |
| 65 | Structural and Functional Consequences of Altering a Peptide MHC Anchor Residue. Journal of<br>Immunology, 2001, 166, 3345-3354.                                                                                                                        | 0.4  | 102       |
| 66 | Ligand-Specific Selection of MHC Class II-Restricted Thymocytes in Fetal Thymic Organ Culture. Journal of Immunology, 2000, 164, 5675-5682.                                                                                                             | 0.4  | 10        |
| 67 | Partially Phosphorylated T Cell Receptor ζ Molecules Can Inhibit T Cell Activation. Journal of<br>Experimental Medicine, 1999, 190, 1627-1636.                                                                                                          | 4.2  | 103       |
| 68 | A Kinetic Threshold between Negative and Positive Selection Based on the Longevity of the T Cell<br>Receptor–Ligand Complex. Journal of Experimental Medicine, 1999, 189, 1531-1544.                                                                    | 4.2  | 112       |
| 69 | High- and Low-Potency Ligands with Similar Affinities for the TCR. Immunity, 1998, 9, 817-826.                                                                                                                                                          | 6.6  | 296       |
| 70 | Costimulation of T Cell Activation by Integrin-associated Protein (CD47) Is an Adhesion-dependent, CD28-independent Signaling Pathway. Journal of Experimental Medicine, 1997, 185, 1-12.                                                               | 4.2  | 223       |
| 71 | Essential flexibility in the T-cell recognition of antigen. Nature, 1996, 380, 495-498.                                                                                                                                                                 | 13.7 | 305       |