Hoang-Phuong Phan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3221099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Avoiding Pre-Isolation Step in Exosome Analysis: Direct Isolation and Sensitive Detection of Exosomes Using Gold-Loaded Nanoporous Ferric Oxide Nanozymes. Analytical Chemistry, 2019, 91, 3827-3834.	3.2	209
2	The Piezoresistive Effect of SiC for MEMS Sensors at High Temperatures: A Review. Journal of Microelectromechanical Systems, 2015, 24, 1663-1677.	1.7	203
3	Flexible Microfluidics: Fundamentals, Recent Developments, and Applications. Micromachines, 2019, 10, 830.	1.4	130
4	Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring. Biosensors and Bioelectronics, 2020, 166, 112460.	5.3	129
5	Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare. Journal of Materials Chemistry C, 2016, 4, 10061-10068.	2.7	119
6	Thermoresistive Effect for Advanced Thermal Sensors: Fundamentals, Design Considerations, and Applications. Journal of Microelectromechanical Systems, 2017, 26, 966-986.	1.7	108
7	Long-Lived, Transferred Crystalline Silicon Carbide Nanomembranes for Implantable Flexible Electronics. ACS Nano, 2019, 13, 11572-11581.	7.3	101
8	Graphite on paper as material for sensitive thermoresistive sensors. Journal of Materials Chemistry C, 2015, 3, 8776-8779.	2.7	98
9	Integrated photonic platform for quantum information with continuous variables. Science Advances, 2018, 4, eaat9331.	4.7	93
10	Fundamental piezoresistive coefficients of p-type single crystalline 3C-SiC. Applied Physics Letters, 2014, 104, .	1.5	70
11	Thermal Flow Sensors for Harsh Environments. Sensors, 2017, 17, 2061.	2.1	68
12	Advances in ultrasensitive piezoresistive sensors: from conventional to flexible and stretchable applications. Materials Horizons, 2021, 8, 2123-2150.	6.4	61
13	Highly sensitive 4H-SiC pressure sensor at cryogenic and elevatedÂtemperatures. Materials and Design, 2018, 156, 441-445.	3.3	60
14	Liquid Marbles as Miniature Reactors for Chemical and Biological Applications. Processes, 2020, 8, 793.	1.3	60
15	Thickness dependence of the piezoresistive effect in p-type single crystalline 3C-SiC nanothin films. Journal of Materials Chemistry C, 2014, 2, 7176-7179.	2.7	58
16	Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating. Scientific Reports, 2016, 6, 28499.	1.6	55
17	Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring. Journal Physics D: Applied Physics, 2017, 50, 215401.	1.3	54
18	Piezoresistive Effect of p-Type Single Crystalline 3C-SiC Thin Film. IEEE Electron Device Letters, 2014, 35, 399-401.	2.2	51

#	Article	IF	CITATIONS
19	Active demultiplexing of single photons from a solidâ€state source. Laser and Photonics Reviews, 2017, 11, 1600297.	4.4	51
20	Single-Crystalline 3C-SiC anodically Bonded onto Glass: An Excellent Platform for High-Temperature Electronics and Bioapplications. ACS Applied Materials & amp; Interfaces, 2017, 9, 27365-27371.	4.0	49
21	Highly sensitive pressure sensors employing 3C-SiC nanowires fabricated on a free standing structure. Materials and Design, 2018, 156, 16-21.	3.3	49
22	Nanoarchitectonics for Wide Bandgap Semiconductor Nanowires: Toward the Next Generation of Nanoelectromechanical Systems for Environmental Monitoring. Advanced Science, 2020, 7, 2001294.	5.6	48
23	Giant piezoresistive effect by optoelectronic coupling in a heterojunction. Nature Communications, 2019, 10, 4139.	5.8	46
24	Advances in Rational Design and Materials of Highâ€Performance Stretchable Electromechanical Sensors. Small, 2020, 16, e1905707.	5.2	46
25	The Piezoresistive Effect in Top–Down Fabricated p-Type 3C-SiC Nanowires. IEEE Electron Device Letters, 2016, 37, 1029-1032.	2.2	45
26	Self-Powered Broadband (UV-NIR) Photodetector Based on 3C-SiC/Si Heterojunction. IEEE Transactions on Electron Devices, 2019, 66, 1804-1809.	1.6	44
27	Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature. Applied Physics Express, 2015, 8, 061303.	1.1	41
28	Experimental Investigation of Piezoresistive Effect in p-Type 4H–SiC. IEEE Electron Device Letters, 2017, 38, 955-958.	2.2	41
29	An On hip SiC MEMS Device with Integrated Heating, Sensing, and Microfluidic Cooling Systems. Advanced Materials Interfaces, 2018, 5, 1800764.	1.9	41
30	Piezoresistive effect of p-type single crystalline 3C–SiC on (111) plane. RSC Advances, 2016, 6, 21302-21307.	1.7	40
31	Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching. RSC Advances, 2015, 5, 82121-82126.	1.7	39
32	Thermoresistive properties of p-type 3C–SiC nanoscale thin films for high-temperature MEMS thermal-based sensors. RSC Advances, 2015, 5, 106083-106086.	1.7	38
33	The production of recombinant human laminin-332 in a Leishmania tarentolae expression system. Protein Expression and Purification, 2009, 68, 79-84.	0.6	37
34	Excellent Rectifying Properties of the n-3C-SiC/p-Si Heterojunction Subjected to High Temperature Annealing for Electronics, MEMS, and LED Applications. Scientific Reports, 2017, 7, 17734.	1.6	37
35	Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology. Sensors and Actuators A: Physical, 2018, 279, 293-305.	2.0	37
36	Nano strain-amplifier: Making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects. Applied Physics Letters, 2016, 109, .	1.5	36

#	Article	IF	CITATIONS
37	A Versatile Sacrificial Layer for Transfer Printing of Wide Bandgap Materials for Implantable and Stretchable Bioelectronics. Advanced Functional Materials, 2020, 30, 2004655.	7.8	34
38	Hydrogel Nanoarchitectonics: An Evolving Paradigm for Ultrasensitive Biosensing. Small, 2022, 18, .	5.2	31
39	Electrical Properties of p-type 3C-SiC/Si Heterojunction Diode Under Mechanical Stress. IEEE Electron Device Letters, 2014, 35, 1293-1295.	2.2	30
40	Naked-eye and electrochemical detection of isothermally amplified HOTAIR long non-coding RNA. Analyst, The, 2018, 143, 3021-3028.	1.7	30
41	Paper-Based Electronics Using Graphite and Silver Nanoparticles for Respiration Monitoring. IEEE Sensors Journal, 2019, 19, 11784-11790.	2.4	30
42	The effect of strain on the electrical conductance of p-type nanocrystalline silicon carbide thin films. Journal of Materials Chemistry C, 2015, 3, 1172-1176.	2.7	29
43	Self-sensing paper-based actuators employing ferromagnetic nanoparticles and graphite. Applied Physics Letters, 2017, 110, .	1.5	29
44	High thermosensitivity of silicon nanowires induced by amorphization. Materials Letters, 2016, 177, 80-84.	1.3	28
45	High-temperature tolerance of the piezoresistive effect in p-4H-SiC for harsh environment sensing. Journal of Materials Chemistry C, 2018, 6, 8613-8617.	2.7	28
46	Flexible and multifunctional electronics fabricated by a solvent-free and user-friendly method. RSC Advances, 2016, 6, 77267-77274.	1.7	27
47	Mesoporous gold–silver alloy films towards amplification-free ultra-sensitive microRNA detection. Journal of Materials Chemistry B, 2020, 8, 9512-9523.	2.9	27
48	Pushing the Limits of Piezoresistive Effect by Optomechanical Coupling in 3C-SiC/Si Heterostructure. ACS Applied Materials & Interfaces, 2017, 9, 39921-39925.	4.0	26
49	Robust Free‣tanding Nanoâ€Thin SiC Membranes Enable Direct Photolithography for MEMS Sensing Applications. Advanced Engineering Materials, 2018, 20, 1700858.	1.6	26
50	Orientation dependence of the pseudo-Hall effect in p-type 3C–SiC four-terminal devices under mechanical stress. RSC Advances, 2015, 5, 56377-56381.	1.7	25
51	The effect of device geometry and crystal orientation on the stress-dependent offset voltage of 3C–SiC(100) four terminal devices. Journal of Materials Chemistry C, 2015, 3, 8804-8809.	2.7	25
52	The Dependence of Offset Voltage in p-Type 3C-SiC van der Pauw Device on Applied Strain. IEEE Electron Device Letters, 2015, 36, 708-710.	2.2	25
53	Novel Low-Cost Sensor for Human Bite Force Measurement. Sensors, 2016, 16, 1244.	2.1	25
54	Stretchable Inertial Microfluidic Device for Tunable Particle Separation. Analytical Chemistry, 2020, 92, 12473-12480.	3.2	25

#	Article	IF	CITATIONS
55	Ultra-sensitive self-powered position-sensitive detector based on horizontally-aligned double 3C-SiC/Si heterostructures. Nano Energy, 2021, 79, 105494.	8.2	25
56	Implanted Flexible Electronics: Set Device Lifetime with Smart Nanomaterials. Micromachines, 2021, 12, 157.	1.4	24
57	Unintentionally Doped Epitaxial 3C-SiC(111) Nanothin Film as Material for Highly Sensitive Thermal Sensors at High Temperatures. IEEE Electron Device Letters, 2018, 39, 580-583.	2.2	22
58	lsotropic piezoresistance of p-type 4H-SiC in (0001) plane. Applied Physics Letters, 2018, 113, .	1.5	22
59	Opto-electronic coupling in semiconductors: towards ultrasensitive pressure sensing. Journal of Materials Chemistry C, 2020, 8, 4713-4721.	2.7	22
60	Ultra-high strain in epitaxial silicon carbide nanostructures utilizing residual stress amplification. Applied Physics Letters, 2017, 110, 141906.	1.5	21
61	Wide-Band-Gap Semiconductors for Biointegrated Electronics: Recent Advances and Future Directions. ACS Applied Electronic Materials, 2021, 3, 1959-1981.	2.0	21
62	Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. Lab on A Chip, 2021, 21, 2008-2018.	3.1	21
63	A Wearable, Bending-Insensitive Respiration Sensor Using Highly Oriented Carbon Nanotube Film. IEEE Sensors Journal, 2021, 21, 7308-7315.	2.4	20
64	Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications. ACS Applied Materials & Interfaces, 2017, 9, 41641-41647.	4.0	19
65	Highly sensitive p-type 4H-SiC van der Pauw sensor. RSC Advances, 2018, 8, 3009-3013.	1.7	19
66	Optothermotronic effect as an ultrasensitive thermal sensing technology for solid-state electronics. Science Advances, 2020, 6, eaay2671.	4.7	19
67	Self-powered monolithic accelerometer using a photonic gate. Nano Energy, 2020, 76, 104950.	8.2	18
68	Pseudo-Hall effect in single crystal 3C-SiC(111) four-terminal devices. Journal of Materials Chemistry C, 2015, 3, 12394-12398.	2.7	17
69	Low-Cost Graphite on Paper Pressure Sensor for a Robot Gripper with a Trivial Fabrication Process. Sensors, 2018, 18, 3300.	2.1	17
70	Photoresponse of a Highly-Rectifying 3C-SiC/Si Heterostructure Under UV and Visible Illuminations. IEEE Electron Device Letters, 2018, 39, 1219-1222.	2.2	17
71	Polyacrylonitrileâ€carbon Nanotubeâ€polyacrylonitrile: A Versatile Robust Platform for Flexible Multifunctional Electronic Devices in Medical Applications. Macromolecular Materials and Engineering, 2019, 304, 1900014.	1.7	17
72	Integrated, Transparent Silicon Carbide Electronics and Sensors for Radio Frequency Biomedical Therapy. ACS Nano, 2022, 16, 10890-10903.	7.3	17

#	Article	IF	CITATIONS
73	Localized Surface Plasmon Enhanced Laser Reduction of Graphene Oxide for Wearable Strain Sensor. Advanced Materials Technologies, 2021, 6, 2001191.	3.0	16
74	Electrically Stable Carbon Nanotube Yarn Under Tensile Strain. IEEE Electron Device Letters, 2017, 38, 1331-1334.	2.2	15
75	A new structure of Tesla coupled nozzle in synthetic jet micro-pump. Sensors and Actuators A: Physical, 2020, 315, 112296.	2.0	15
76	High temperature silicon-carbide-based flexible electronics for monitoring hazardous environments. Journal of Hazardous Materials, 2020, 394, 122486.	6.5	15
77	Universal Electrochemical Synthesis of Mesoporous Chalcogenide Semiconductors: Mesoporous CdSe and CdTe Thin Films for Optoelectronic Applications. Angewandte Chemie - International Edition, 2021, 60, 9660-9665.	7.2	15
78	Piezotronic effect in a normally off p-GaN/AlGaN/GaN HEMT toward highly sensitive pressure sensor. Applied Physics Letters, 2021, 118, 242104.	1.5	15
79	Controllable high-performance liquid marble micromixer. Lab on A Chip, 2022, 22, 1508-1518.	3.1	15
80	Enhanced Electrohydrodynamics for Electrospinning a Highly Sensitive Flexible Fiber-Based Piezoelectric Sensor. ACS Applied Electronic Materials, 2022, 4, 1301-1310.	2.0	15
81	Electrical Resistance of Carbon Nanotube Yarns Under Compressive Transverse Pressure. IEEE Electron Device Letters, 2018, 39, 584-587.	2.2	14
82	A hot-film air flow sensor for elevated temperatures. Review of Scientific Instruments, 2019, 90, 015007.	0.6	13
83	Electrostatically excited liquid marble as a micromixer. Reaction Chemistry and Engineering, 2021, 6, 1386-1394.	1.9	13
84	3C–SiC on glass: an ideal platform for temperature sensors under visible light illumination. RSC Advances, 2016, 6, 87124-87127.	1.7	12
85	Degraded boiling heat transfer from hotwire in ferrofluid due to particle deposition. Applied Thermal Engineering, 2018, 142, 255-261.	3.0	12
86	Wireless Battery-Free SiC Sensors Operating in Harsh Environments Using Resonant Inductive Coupling. IEEE Electron Device Letters, 2019, 40, 609-612.	2.2	12
87	Highly-doped SiC resonator with ultra-large tuning frequency range by Joule heating effect. Materials and Design, 2020, 194, 108922.	3.3	12
88	Digital Imagingâ€based Colourimetry for Enzymatic Processes in Transparent Liquid Marbles. ChemPhysChem, 2021, 22, 99-105.	1.0	12
89	A sensitive liquid-cantilever diaphragm for pressure sensor. , 2013, , .		11
90	Graphite-on-paper based tactile sensors using plastic laminating technique. , 2015, , .		11

6

#	Article	IF	CITATIONS
91	Influence of external mechanical stress on electrical properties of single-crystal n-3C-SiC/p-Si heterojunction diode. Applied Physics Express, 2015, 8, 061302.	1.1	11
92	Thermoresistance of p â€Type 4H–SiC Integrated MEMS Devices for Highâ€Temperature Sensing. Advanced Engineering Materials, 2019, 21, 1801049.	1.6	11
93	In-air particle generation by on-chip electrohydrodynamics. Lab on A Chip, 2021, 21, 1779-1787.	3.1	11
94	Piezoresistive Effect with a Gauge Factor of 18â€ [−] 000 in a Semiconductor Heterojunction Modulated by Bonded Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 35046-35053.	4.0	11
95	Piezo-Hall effect in single crystal p-type 3C–SiC(100) thin film grown by low pressure chemical vapor deposition. RSC Advances, 2016, 6, 31191-31195.	1.7	9
96	Steady-state analytical model of suspended p-type 3C–SiC bridges under consideration of Joule heating. Journal of Micromechanics and Microengineering, 2017, 27, 075008.	1.5	9
97	A Generalized Analytical Model for Joule Heating of Segmented Wires. Journal of Heat Transfer, 2018, 140, .	1.2	9
98	Characterization of the piezoresistance in highly doped p-type 3C-SiC at cryogenic temperatures. RSC Advances, 2018, 8, 29976-29979.	1.7	9
99	Electrospray propelled by ionic wind in a bipolar system for direct delivery of charge reduced nanoparticles. Applied Physics Express, 2021, 14, 055001.	1.1	9
100	Influence of gallium ion beam acceleration voltage on the bend angle of amorphous silicon cantilevers. Japanese Journal of Applied Physics, 2016, 55, 06GL02.	0.8	9
101	Environment-friendly wearable thermal flow sensors for noninvasive respiratory monitoring. , 2017, ,		8
102	Plasmaâ€Induced Nanocrystalline Domain Engineering and Surface Passivation in Mesoporous Chalcogenide Semiconductor Thin Films. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
103	Lithography and Etchingâ€Free Microfabrication of Silicon Carbide on Insulator Using Direct UV Laser Ablation. Advanced Engineering Materials, 2020, 22, 1901173.	1.6	7
104	ScAlN/3C-SiC/Si platform for monolithic integration of highly sensitive piezoelectric and piezoresistive devices. Applied Physics Letters, 2020, 116, 132902.	1.5	7
105	A hydrophone using liquid to bridge the gap of a piezo-resistive cantilever. , 2013, , .		6
106	A rapid and cost-effective metallization technique for 3C–SiC MEMS using direct wire bonding. RSC Advances, 2018, 8, 15310-15314.	1.7	6
107	Engineering Stress in Thin Films: An Innovative Pathway Toward 3D Micro and Nanosystems. Small, 2022, 18, 2105748.	5.2	6
108	Expression and Chain Assembly of Human Laminin-332 in an Insect Cell-Free Translation System. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1847-1852.	0.6	5

#	Article	IF	CITATIONS
109	Formation of silicon carbide nanowire on insulator through direct wet oxidation. Materials Letters, 2017, 196, 280-283.	1.3	5
110	Strain Effect in Highlyâ€Doped nâ€Type 3Câ€SiCâ€onâ€Glass Substrate for Mechanical Sensors and Mobility Enhancement. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800288.	0.8	5
111	Transparent crystalline cubic SiC-on-glass electrodes enable simultaneous electrochemistry and optical microscopy. Chemical Communications, 2019, 55, 7978-7981.	2.2	5
112	Functional Microarray Platform with Self-Assembled Monolayers on 3C-Silicon Carbide. Langmuir, 2020, 36, 13181-13192.	1.6	5
113	Toward on-board microchip synthesis of CdSe <i>vs.</i> PbSe nanocrystalline quantum dots as a spectral decoy for protecting space assets. Reaction Chemistry and Engineering, 2021, 6, 471-485.	1.9	5
114	Multi-axis force sensor with dynamic range up to ultrasonic. , 2014, , .		4
115	Piezo-Hall effect and fundamental piezo-Hall coefficients of single crystal n-type 3C-SiC(100) with low carrier concentration. Applied Physics Letters, 2017, 110, 162903.	1.5	4
116	Dependence of offset voltage in AlGaN/GaN van der Pauw devices under mechanical strain. Materials Letters, 2019, 244, 66-69.	1.3	4
117	Universal Electrochemical Synthesis of Mesoporous Chalcogenide Semiconductors: Mesoporous CdSe and CdTe Thin Films for Optoelectronic Applications. Angewandte Chemie, 2021, 133, 9746-9751.	1.6	4
118	Picomolar detection of carbohydrate-lectin interactions on piezoelectrically printed microcantilever array. Biosensors and Bioelectronics, 2022, 205, 114088.	5.3	4
119	Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation. Applied Physics Letters, 2016, 109, 092903.	1.5	3
120	Pseudo-Hall Effect in Single Crystal n-Type 3C-SiC(100) Thin Film. Key Engineering Materials, 0, 733, 3-7.	0.4	3
121	Ultra-Sensitive OPTO-Piezoresistive Sensors Utilising 3C-SiC/Si Heterostructures. , 2019, , .		3
122	Optoelectronic Enhancement for Piezoresistive Pressure Sensor. , 2020, , .		3
123	Flexible and Wearable Flow Sensor Using Spinnable Carbon Nanotube Nanofilm for Respiration Monitoring. , 2020, , .		3
124	Fabrication of a sensitive pressure sensor using carbon nanotube micro-yarns. , 2017, , .		2
125	Wet oxidation of 3C-SiC on Si for MEMS processing and use in harsh environments: Effects of the film thicknesses, crystalline orientations, and growth temperatures. Sensors and Actuators A: Physical, 2021, 317, 112474.	2.0	2
126	Low-Cost Multifunctional Ionic Liquid Pressure and Temperature Sensor. Smart Innovation, Systems and Technologies, 2019, , 184-192.	0.5	2

#	Article	IF	CITATIONS
127	The Piezoresistive Effect of Top Down p-Type 3C-SiC Nanowires. Springer Theses, 2017, , 109-117.	0.0	2
128	Thermal-piezoresistive pumping on double SiC layer resonator for effective quality factor tuning. Sensors and Actuators A: Physical, 2022, 343, 113678.	2.0	2
129	Design and fabrication of electrothermal SiC nanoresonators for high-resolution nanoparticle sensing. , 2016, , .		1
130	Sensitive and fast response graphite pressure sensor fabricated by a solvent-free approach. , 2017, , .		1
131	Utilizing large hall offset voltage for conversion free 4H-SiC strain sensor. , 2018, , .		1
132	Stretchable Bioelectronics: A Versatile Sacrificial Layer for Transfer Printing of Wide Bandgap Materials for Implantable and Stretchable Bioelectronics (Adv. Funct. Mater. 43/2020). Advanced Functional Materials, 2020, 30, 2070287.	7.8	1
133	Physical Sensors: Thermal Sensors. , 2021, , .		1
134	Carbon Nanotube Four-Terminal Devices for Pressure Sensing Applications. Smart Innovation, Systems and Technologies, 2019, , 199-207.	0.5	1
135	Ultraviolet and Visible Photodetection Using 3C-SiC/Si Hetero-Epitaxial Junction. Smart Innovation, Systems and Technologies, 2019, , 208-216.	0.5	1
136	Pseudo-Hall Effect in Graphite on Paper Based Four Terminal Devices for Stress Sensing Applications. Journal of Physics: Conference Series, 2017, 829, 012004.	0.3	1
137	Silicon Micro-/Nanomachining and Applications. , 2018, , 225-261.		1
138	Seebeck coefficient in SiC/Si heterojunction for self-powered thermal sensor. , 2021, , .		1
139	Design and fabrication of paper-based stretchable sensor for respiration monitoring. , 2021, , .		1
140	Plasma Induced Nanocrystalline Domain Engineering and Surface Passivation in Mesoporous Chalcogenide Semiconductor Thin Films. Angewandte Chemie, 0, , .	1.6	1
141	Micro liquid-based thermo-acoustic transmitter for emitting ultrasound in liquid medium. , 2014, , .		Ο
142	Characterization of the Piezoresistive Effect in p-Type Single Crystalline 3C-SiC. Springer Theses, 2017, , 63-99.	0.0	0
143	Introduction and Literature Review. Springer Theses, 2017, , 1-30.	0.0	0
144	Ultra-thin LPCVD silicon carbide membrane: A promising platform for bio-cell culturing. , 2018, , .		0

Ultra-thin LPCVD silicon carbide membrane: A promising platform for bio-cell culturing. , 2018, , . 144

9

#	Article	IF	CITATIONS
145	Theory of the Piezoresistive Effect in p-Type 3C-SiC. Springer Theses, 2017, , 31-47.	0.0	0
146	The Piezoresistive Effect in p-Type Nanocrystalline SiC. Springer Theses, 2017, , 101-108.	0.0	0
147	3C-SiC Film Growth and Sample Preparation. Springer Theses, 2017, , 49-61.	0.0	0
148	Squeezing in lithium niobate waveguides. , 2019, , .		0
149	Ultrasensitive strain sensor enhanced by Bonded Light Emitting Diodes. , 2021, , .		0
150	Rapid Fabrication of High-responsivity Photodetectors Utilizing AlGaN/GaN on Sapphire. , 2021, , .		0
151	Engineering Stress in Thin Films: An Innovative Pathway Toward 3D Micro and Nanosystems (Small) Tj ETQq1 1 C).784314 r 5.2	gBT /Overloc
152	Giant Piezotronic Effect by Photoexcitation–Electronic Coupling in a p-GaN/AlGaN/GaN Heterojunction. ACS Applied Electronic Materials, 2022, 4, 2648-2655.	2.0	0