Rong Ji

List of Publications by Citations

Source: https://exaly.com/author-pdf/3221075/rong-ji-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

174 6,209 42 72 g-index

177 7,784 8.5 6.23 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
174	How relevant is recalcitrance for the stabilization of organic matter in soils?. <i>Journal of Plant Nutrition and Soil Science</i> , 2008 , 171, 91-110	2.3	498
173	TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 822-8		390
172	Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. <i>Environmental Pollution</i> , 2016 , 219, 166-173	9.3	319
171	Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. <i>Science of the Total Environment</i> , 2020 , 703, 134699	10.2	185
170	Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. <i>Plant Physiology and Biochemistry</i> , 2017 , 110, 210-225	5.4	183
169	Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 1935-1947	5.7	175
168	Physiological and Biochemical Changes Imposed by CeO2 Nanoparticles on Wheat: A Life Cycle Field Study. <i>Environmental Science & Environmental Science</i>	10.3	134
167	Aging Significantly Affects Mobility and Contaminant-Mobilizing Ability of Nanoplastics in Saturated Loamy Sand. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	118
166	Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. <i>Water Research</i> , 2013 , 47, 2497-506	12.5	118
165	Degradation, metabolism, and bound-residue formation and release of Tetrabromobisphenol A in soil during sequential anoxic-oxic incubation. <i>Environmental Science & Environmental Science & Environme</i>	54 ^{10.3}	113
164	Metabolomics Reveals How Cucumber (Cucumis sativus) Reprograms Metabolites To Cope with Silver Ions and Silver Nanoparticle-Induced Oxidative Stress. <i>Environmental Science & Eamp; Technology</i> , 2018 , 52, 8016-8026	10.3	108
163	Polystyrene Nanoplastics-Enhanced Contaminant Transport: Role of Irreversible Adsorption in Glassy Polymeric Domain. <i>Environmental Science & Enp.</i> ; Technology, 2018 , 52, 2677-2685	10.3	106
162	Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. <i>Global Change Biology</i> , 2015 , 21, 4076-85	11.4	105
161	Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment. <i>Chemosphere</i> , 2010 , 80, 1399-405	8.4	87
160	Isomer-specific degradation of branched and linear 4-nonylphenol isomers in an oxic soil. <i>Environmental Science & Description (Line of the Science and Science an</i>	10.3	80
159	Degradation and metabolism of tetrabromobisphenol A (TBBPA) in submerged soil and soil-plant systems. <i>Environmental Science & Environmental &</i>	10.3	79
158	Solution by dilution?A review on the pollution status of the Yangtze River. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 6934-71	5.1	76

157	Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. <i>Science of the Total Environment</i> , 2020 , 748, 142427	10.2	76
156	Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions. <i>Environmental Science & Technology</i> , 2011 , 45, 6997-7003	10.3	71
155	Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. <i>Soil Biology and Biochemistry</i> , 2000 , 32, 1281-1291	7.5	69
154	Oxidative stress responses and insights into the sensitivity of the earthworms Metaphire guillelmi and Eisenia fetida to soil cadmium. <i>Science of the Total Environment</i> , 2017 , 574, 300-306	10.2	64
153	Fate of Tetrabromobisphenol A (TBBPA) and Formation of Ester- and Ether-Linked Bound Residues in an Oxic Sandy Soil. <i>Environmental Science & Environmental Science & Environm</i>	10.3	63
152	Enhanced transport of phenanthrene and 1-naphthol by colloidal graphene oxide nanoparticles in saturated soil. <i>Environmental Science & Environmental </i>	10.3	63
151	Metabolomics Reveals the "Invisible" Responses of Spinach Plants Exposed to CeO Nanoparticles. Environmental Science & Environmental Science & Enviro	10.3	62
150	Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. <i>Soil Biology and Biochemistry</i> , 2005 , 37, 1648-165	5 ^{7·5}	58
149	Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways. <i>Environmental Science: Nano</i> , 2019 , 6, 1716-1727	7.1	54
148	Fate and metabolism of tetrabromobisphenol A in soil slurries without and with the amendment with the alkylphenol degrading bacterium Sphingomonas sp. strain TTNP3. <i>Environmental Pollution</i> , 2014 , 193, 181-188	9.3	54
147	Species-dependent effects of biochar amendment on bioaccumulation of atrazine in earthworms. <i>Environmental Pollution</i> , 2014 , 186, 241-7	9.3	53
146	Selective digestion of the proteinaceous component of humic substances by the geophagous earthworms Metaphire guillelmi and Amynthas corrugatus. <i>Soil Biology and Biochemistry</i> , 2010 , 42, 145.	5 ⁷ 1462	53
145	Bioaccumulation and bound-residue formation of a branched 4-nonylphenol isomer in the geophagous earthworm Metaphire guillelmi in a rice paddy soil. <i>Environmental Science & Environmental Science & Technology</i> , 2010 , 44, 4558-63	10.3	52
144	The degradation of alpha-quaternary nonylphenol isomers by Sphingomonas sp. strain TTNP3 involves a type II ipso-substitution mechanism. <i>Applied Microbiology and Biotechnology</i> , 2006 , 70, 114-22	<u>5</u> .7	52
143	Transformation and mineralization of 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes orthognathus. <i>Biology and Fertility of Soils</i> , 2001 , 33, 166-174	6.1	52
142	Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. <i>Nanotoxicology</i> , 2016 , 10, 1207-14	5.3	51
141	Fate in soil of 14C-sulfadiazine residues contained in the manure of young pigs treated with a veterinary antibiotic. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes,</i> 2008 , 43, 8-20	2.2	51
140	A carbon-14 radiotracer-based study on the phototransformation of polystyrene nanoplastics in water versus in air. <i>Environmental Science: Nano</i> , 2019 , 6, 2907-2917	7.1	50

139	Nitrogen Mineralization, Ammonia Accumulation, and Emission of Gaseous NH3 by Soil-feeding Termites. <i>Biogeochemistry</i> , 2006 , 78, 267-283	3.8	50
138	Birnessite-induced binding of phenolic monomers to soil humic substances and nature of the bound residues. <i>Environmental Science & Environmental Scie</i>	10.3	48
137	Differential effects of copper nanoparticles/microparticles in agronomic and physiological parameters of oregano (Origanum vulgare). <i>Science of the Total Environment</i> , 2018 , 618, 306-312	10.2	48
136	Elevated CO levels modify TiO nanoparticle effects on rice and soil microbial communities. <i>Science of the Total Environment</i> , 2017 , 578, 408-416	10.2	46
135	Mineralisation of C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment. <i>New Biotechnology</i> , 2017 , 38, 101-105	6.4	46
134	Enhanced transformation of tetrabromobisphenol a by nitrifiers in nitrifying activated sludge. <i>Environmental Science & Documental Scie</i>	10.3	44
133	Silver Nanoparticles Alter Soil Microbial Community Compositions and Metabolite Profiles in Unplanted and Cucumber-Planted Soils. <i>Environmental Science & Environmental Scien</i>	10.3	44
132	Effects of biochar on the transformation and earthworm bioaccumulation of organic pollutants in soil. <i>Chemosphere</i> , 2016 , 145, 431-7	8.4	42
131	Fate and O-methylating detoxification of Tetrabromobisphenol A (TBBPA) in two earthworms (Metaphire guillelmi and Eisenia fetida). <i>Environmental Pollution</i> , 2017 , 227, 526-533	9.3	38
130	Antioxidant and gene expression responses of Eisenia fetida following repeated exposure to BDE209 and Pb in a soil-earthworm system. <i>Science of the Total Environment</i> , 2016 , 556, 163-8	10.2	38
129	Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii. <i>Aquatic Toxicology</i> , 2014 , 157, 167-74	5.1	34
128	Digestion and residue stabilization of bacterial and fungal cells, protein, peptidoglycan, and chitin by the geophagous earthworm Metaphire guillelmi. <i>Soil Biology and Biochemistry</i> , 2013 , 64, 9-17	7.5	34
127	Biochar, activated carbon, and carbon nanotubes have different effects on fate of (14)C-catechol and microbial community in soil. <i>Scientific Reports</i> , 2015 , 5, 16000	4.9	34
126	Effects of microcystin-LR on the metal bioaccumulation and toxicity in Chlamydomonas reinhardtii. <i>Water Research</i> , 2012 , 46, 369-77	12.5	34
125	C60 Fullerols Enhance Copper Toxicity and Alter the Leaf Metabolite and Protein Profile in Cucumber. <i>Environmental Science & Environmental Science & </i>	10.3	33
124	Metal nanoparticles by doping carbon nanotubes improved the sorption of perfluorooctanoic acid. <i>Journal of Hazardous Materials</i> , 2018 , 351, 206-214	12.8	31
123	Abiotic association of soil-borne monomeric phenols with humic acids. <i>Organic Geochemistry</i> , 2005 , 36, 583-593	3.1	31
122	Synthesis and characterization of specifically 14C-labeled humic model compounds for feeding trials with soil-feeding termites. <i>Soil Biology and Biochemistry</i> , 2000 , 32, 1271-1280	7.5	31

(2011-2020)

Foliar Application of SiO Nanoparticles Alters Soil Metabolite Profiles and Microbial Community Composition in the Pakchoi (L.) Rhizosphere Grown in Contaminated Mine Soil. <i>Environmental Science & Environmental Science & </i>	10.3	31
Release of polycyclic aromatic hydrocarbons from biochar fine particles in simulated lung fluids: Implications for bioavailability and risks of airborne aromatics. <i>Science of the Total Environment</i> , 2019 , 655, 1159-1168	10.2	31
Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. <i>Environmental Science: Nano</i> , 2020 , 7, 1692-1703	7.1	30
Physiological and metabolic responses of maize (Zea mays) plants to FeO nanoparticles. <i>Science of the Total Environment</i> , 2020 , 718, 137400	10.2	30
The fate of catechol in soil as affected by earthworms and clay. <i>Soil Biology and Biochemistry</i> , 2009 , 41, 330-339	7.5	30
Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from water by carbonaceous nanomaterials: A review. <i>Critical Reviews in Environmental Science and Technology</i> , 2020 , 50, 2379-2414	11.1	30
Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D) by Novel Photocatalytic Material of Tourmaline-Coated TiOINanoparticles: Kinetic Study and Model. <i>Materials</i> , 2013 , 6, 1530-1542	3.5	29
Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite. <i>Archives of Microbiology</i> , 2007 , 187, 15-27	3	29
Label-Free Imaging of Nanoparticle Uptake Competition in Single Cells by Hyperspectral Stimulated Raman Scattering. <i>Small</i> , 2018 , 14, 1703246	11	28
Comparative evaluation of nonylphenol isomers on steroidogenesis of rat Leydig Cells. <i>Toxicology in Vitro</i> , 2012 , 26, 1114-21	3.6	28
Ethyl lactate-EDTA composite system enhances the remediation of the cadmium-contaminated soil by autochthonous willow (Salix x aureo-pendula CL & 1011 ft in the lower reaches of the Yangtze River. <i>Journal of Hazardous Materials</i> , 2010 , 181, 673-8	12.8	28
Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. <i>Science of the Total Environment</i> , 2021 , 752, 142264	10.2	28
Photodegradation of carbon dots cause cytotoxicity. <i>Nature Communications</i> , 2021 , 12, 812	17.4	27
Transport and retention of perfluorooctanoic acid (PFOA) in natural soils: Importance of soil organic matter and mineral contents, and solution ionic strength. <i>Journal of Contaminant Hydrology</i> , 2019 , 225, 103477	3.9	26
Contributions of ryegrass, lignin and rhamnolipid to polycyclic aromatic hydrocarbon dissipation in an arable soil. <i>Soil Biology and Biochemistry</i> , 2018 , 118, 27-34	7.5	25
Degradation and bound-residue formation of nonylphenol in red soil and the effects of ammonium. <i>Environmental Pollution</i> , 2014 , 186, 83-9	9.3	25
Effects of the geophagous earthworm Metaphire guillelmi on sorption, mineralization, and bound-residue formation of 4-nonylphenol in an agricultural soil. <i>Environmental Pollution</i> , 2014 , 189, 202-7	9.3	25
Enhancement of chlorophenol sorption on soil by geophagous earthworms (Metaphire guillelmi). <i>Chemosphere</i> , 2011 , 82, 156-62	8.4	25
	Composition in the Pakchol (L.) Rhizosphere Grown in Contaminated Mine Soil. Environmental Science & Amp; Technology, 2020, 54, 13137-13146 Release of polycyclic aromatic hydrocarbons from biochar fine particles in simulated lung fluids: Implications for bioavailability and risks of airborne aromatics. Science of the Total Environment, 2019, 655, 1159-1168 Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environmental Science: Nano, 2020, 7, 1692-1703 Physiological and metabolic responses of maize (Zea mays) plants to FeO nanoparticles. Science of the Total Environment, 2020, 718, 137400 The fate of catechol in soil as affected by earthworms and clay. Soil Biology and Biochemistry, 2009, 41, 330-339 Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from water by carbonaceous nanomaterials: A review. Critical Reviews in Environmental Science and Technology, 2020, 50, 2379-2414 Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D) by Novel Photocatalytic Material of Tourmaline-Coated TiO(Nanoparticles: Kinetic Study and Model. Materials, 2013, 6, 1530-1542 Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite. Archives of Microbiology, 2007, 187, 15-27 Label-Free Imaging of Nanoparticle Uptake Competition in Single Cells by Hyperspectral Stimulated Raman Scattering. Small, 2018, 14, 1703246 Comparative evaluation of nonylphenol isomers on steroidogenesis of rat Leydig Cells. Toxicology in Vitro, 2012, 26, 1114-21 Ethyl Lactate-EDTA composite system enhances the remediation of the cadmium-contaminated soil by autochthonous willow (Salix x aureo-pendula CL B1011R in the lower reaches of the Yangtze River. Journal of Hazardous Materials, 2010, 181, 673-8 Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Science of the Total Environment, 2021, 752, 142264	Composition in the Pakchoi (L.) Rhizosphere Grown in Contaminated Mine Soil. Environmental Science & Amp: Technology, 2020, 54, 13137-13146 Release of polycyclic aromatic hydrocarbons from biochar fine particles in simulated lung fluids: Implications for bioavailability and risks of airborne aromatics. Science of the Total Environment, 2019, 655, 1159-1168 Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environmental Science: Nano, 2020, 7, 1692-1703 Physiological and metabolic responses of maize (Zea mays) plants to FeO nanoparticles. Science of the Total Environment, 2020, 718, 137400 The fate of catechol in soil as affected by earthworms and clay. Soil Biology and Biochemistry, 2009, 41, 330-339 Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from water by carbonaceous nanomaterials: A review. Critical Reviews in Environmental Science and Technology, 2020, 50, 2379-2414 Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D) by Novel Photocatalytic Material of Tourmaline-Coated TiOlNanoparticles: Kinetic Study and Model. Materials, 2013, 6, 1530-1542 Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite. Archives of Microbiology, 2007, 187, 15-27 Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite. Archives of Microbiology, 2007, 187, 15-27 Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite. Archives of Microbiology, 2007, 187, 15-27 Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite. Archives of Microbiology, 2007, 187, 15-27 Sporotalea propionica gen. nov. sp. nov., a hyd

103	Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: a 15N-based approach. <i>Biogeochemistry</i> , 2011 , 103, 355-369	3.8	25
102	Role of dissolved humic acids in the biodegradation of a single isomer of nonylphenol by Sphingomonas sp. <i>Chemosphere</i> , 2007 , 68, 2172-80	8.4	25
101	Quantifying the bioaccumulation of nanoplastics and PAHs in the clamworm Perinereis aibuhitensis. <i>Science of the Total Environment</i> , 2019 , 655, 591-597	10.2	25
100	Elevated CO levels increase the toxicity of ZnO nanoparticles to goldfish (Carassius auratus) in a water-sediment ecosystem. <i>Journal of Hazardous Materials</i> , 2017 , 327, 64-70	12.8	24
99	Transcriptome Reveals the Rice Response to Elevated Free Air CO Concentration and TiO Nanoparticles. <i>Environmental Science & Environmental Science & </i>	10.3	24
98	Physicochemical factors controlling the retention and transport of perfluorooctanoic acid (PFOA) in saturated sand and limestone porous media. <i>Water Research</i> , 2018 , 141, 251-258	12.5	24
97	Bioaccumulation and elimination of bisphenol a (BPA) in the alga Chlorella pyrenoidosa and the potential for trophic transfer to the rotifer Brachionus calyciflorus. <i>Environmental Pollution</i> , 2017 , 227, 460-467	9.3	23
96	Insights into tetrabromobisphenol A adsorption onto soils: Effects of soil components and environmental factors. <i>Science of the Total Environment</i> , 2015 , 536, 582-588	10.2	23
95	Inhibitory effects of carbon nanotubes on the degradation of 14C-2,4-dichlorophenol in soil. <i>Chemosphere</i> , 2013 , 90, 527-34	8.4	23
94	Removal of carbofuran from aqueous solution by orange peel. <i>Desalination and Water Treatment</i> , 2012 , 49, 106-114		23
93	Synthesis of [13C]- and [14C]-labeled phenolic humus and lignin monomers. <i>Chemosphere</i> , 2005 , 60, 116	6 % .8ॄ1	23
92	Fate of phenanthrene and mineralization of its non-extractable residues in an oxic soil. <i>Environmental Pollution</i> , 2017 , 224, 377-383	9.3	22
91	Sorption of a branched nonylphenol and perfluorooctanoic acid on Yangtze River sediments and their model components. <i>Journal of Environmental Monitoring</i> , 2012 , 14, 2653-8		22
90	Stimulation of Tetrabromobisphenol A Binding to Soil Humic Substances by Birnessite and the Chemical Structure of the Bound Residues. <i>Environmental Science & Environmental S</i>	10.3	21
89	Photocatalytic mineralization of dimethoate in aqueous solutions using TiO2: Parameters and by-products analysis. <i>Desalination</i> , 2010 , 258, 28-33	10.3	21
88	Metabolism of a nonylphenol isomer by Sphingomonas sp. strain TTNP3. <i>Environmental Chemistry Letters</i> , 2005 , 2, 185-189	13.3	21
87	Effects of the earthworm Metaphire guillelmi on the mineralization, metabolism, and bound-residue formation of tetrabromobisphenol A (TBBPA) in soil. <i>Science of the Total Environment</i> , 2017 , 595, 528-536	10.2	20
86	Surface-associated metal catalyst enhances the sorption of perfluorooctanoic acid to multi-walled carbon nanotubes. <i>Journal of Colloid and Interface Science</i> , 2012 , 377, 342-6	9.3	20

85	Dynamics in composition and size-class distribution of humic substances in profundal sediments of Lake Constance. <i>Organic Geochemistry</i> , 2001 , 32, 3-10	3.1	20
84	Toxicity of combined chromium(VI) and phenanthrene pollution on the seed germination, stem lengths, and fresh weights of higher plants. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 152	2 ⁵ 7 ⁻¹ 35	19
83	Improving removal of antibiotics in constructed wetland treatment systems based on key design and operational parameters: A review. <i>Journal of Hazardous Materials</i> , 2021 , 407, 124386	12.8	19
82	Formation, characterization, and mineralization of bound residues of tetrabromobisphenol A (TBBPA) in silty clay soil under oxic conditions. <i>Science of the Total Environment</i> , 2017 , 599-600, 332-339	10.2	18
81	Improved sorption of perfluorooctanoic acid on carbon nanotubes hybridized by metal oxide nanoparticles. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 15507-15517	5.1	17
80	Oxidation of benzo[a]pyrene by laccase in soil enhances bound residue formation and reduces disturbance to soil bacterial community composition. <i>Environmental Pollution</i> , 2018 , 242, 462-469	9.3	17
79	Fate and ecological effects of decabromodiphenyl ether in a field lysimeter. <i>Environmental Science & Environmental Science</i>	10.3	17
78	Environmental fate of phenanthrene in lysimeter planted with wheat and rice in rotation. <i>Journal of Hazardous Materials</i> , 2011 , 188, 408-13	12.8	17
77	Effect of structural composition of humic acids on the sorption of a branched nonylphenol isomer. <i>Chemosphere</i> , 2011 , 84, 409-14	8.4	17
76	Low Concentrations of Silver Nanoparticles and Silver Ions Perturb the Antioxidant Defense System and Nitrogen Metabolism in N-Fixing Cyanobacteria. <i>Environmental Science & Environmental Science & </i>	10.3	17
75	High-Throughput Screening for Engineered Nanoparticles That Enhance Photosynthesis Using Mesophyll Protoplasts. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 3382-3389	5.7	16
74	Bioaccumulation, physiological distribution, and biotransformation of tetrabromobisphenol a (TBBPA) in the geophagous earthworm Metaphire guillelmi - hint for detoxification strategy. Journal of Hazardous Materials, 2020, 388, 122027	12.8	16
73	Facile synthesis of (55)Fe-labeled well-dispersible hematite nanoparticles for bioaccumulation studies in nanotoxicology. <i>Environmental Pollution</i> , 2016 , 213, 801-808	9.3	16
72	Fate and metabolism of the brominated flame retardant tetrabromobisphenol A (TBBPA) in rice cell suspension culture. <i>Environmental Pollution</i> , 2016 , 214, 299-306	9.3	15
71	Transformation of tetrabromobisphenol A by Rhodococcus jostii RHA1: Effects of heavy metals. <i>Chemosphere</i> , 2018 , 196, 206-213	8.4	14
70	Abiotic association of PAEs with humic substances and its influence on the fate of PAEs in landfill leachate. <i>Chemosphere</i> , 2010 , 78, 1362-7	8.4	14
69	Key Physicochemical Properties Dictating Gastrointestinal Bioaccessibility of Microplastics-Associated Organic Xenobiotics: Insights from a Deep Learning Approach. <i>Environmental Science & Environmental Science & Deep Learning Approach</i> .	10.3	13
68	Microbial communities in the rhizosphere of different willow genotypes affect phytoremediation potential in Cd contaminated soil. <i>Science of the Total Environment</i> , 2021 , 769, 145224	10.2	13

67	In-situ immobilization of cadmium-polluted upland soil: A ten-year field study. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 207, 111275	7	13
66	Risk assessment of engineered nanoparticles and other contaminants in terrestrial plants. <i>Current Opinion in Environmental Science and Health</i> , 2018 , 6, 21-28	8.1	12
65	Mobilization of soil phosphorus during passage through the gut of larvae of Pachnoda ephippiata (Coleoptera: Scarabaeidae). <i>Plant and Soil</i> , 2006 , 288, 263-270	4.2	12
64	Microplastics in agricultural soils: sources, effects, and their fate. <i>Current Opinion in Environmental Science and Health</i> , 2022 , 25, 100311	8.1	12
63	Response of soil microbial communities to engineered nanomaterials in presence of maize (Zea mays L.) plants. <i>Environmental Pollution</i> , 2020 , 267, 115608	9.3	12
62	Heavy metals in face paints: Assessment of the health risks to Chinese opera actors. <i>Science of the Total Environment</i> , 2020 , 724, 138163	10.2	11
61	CdS nanoparticles in soil induce metabolic reprogramming in broad bean (Vicia faba L.) roots and leaves. <i>Environmental Science: Nano</i> , 2020 , 7, 93-104	7.1	11
60	Effects of 17Eestradiol and 17Eethinylestradiol on the embryonic development of the clearhead icefish (Protosalanx hyalocranius). <i>Chemosphere</i> , 2017 , 176, 18-24	8.4	10
59	Single particle ICP-MS and GC-MS provide a new insight into the formation mechanisms during the green synthesis of AgNPs. <i>New Journal of Chemistry</i> , 2019 , 43, 3946-3955	3.6	10
58	Phytoremediation of soils contaminated with phenanthrene and cadmium by growing willow (Salix Bureo-pendula CL R1011R. <i>International Journal of Phytoremediation</i> , 2016 , 18, 150-6	3.9	10
57	Effects of biochar and the geophagous earthworm Metaphire guillelmi on fate of (14)C-catechol in an agricultural soil. <i>Chemosphere</i> , 2014 , 107, 109-114	8.4	10
56	Effects of Cu and humic acids on degradation and fate of TBBPA in pure culture of Pseudomonas sp. strain CDT. <i>Journal of Environmental Sciences</i> , 2017 , 62, 60-67	6.4	10
55	Fate of a branched nonylphenol isomer in submerged paddy soils amended with nitrate. <i>Water Research</i> , 2008 , 42, 4802-8	12.5	10
54	Importance of surface roughness on perllorooctanoic acid (PFOA) transport in unsaturated porous media. <i>Environmental Pollution</i> , 2020 , 266, 115343	9.3	10
53	Polystyrene microplastics alleviate the effects of sulfamethazine on soil microbial communities at different CO concentrations. <i>Journal of Hazardous Materials</i> , 2021 , 413, 125286	12.8	10
52	Response of soil bacterial communities to sulfadiazine present in manure: Protection and adaptation mechanisms of extracellular polymeric substances. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124887	12.8	9
51	Species-dependent effects of earthworms on the fates and bioavailability of tetrabromobisphenol A and cadmium coexisted in soils. <i>Science of the Total Environment</i> , 2019 , 658, 1416-1422	10.2	9
50	Fate of C-bisphenol F isomers in an oxic soil and the effects of earthworm. <i>Science of the Total Environment</i> , 2019 , 657, 254-261	10.2	9

(2020-2020)

49	Response of cucumber (Cucumis sativus) to perfluorooctanoic acid in photosynthesis and metabolomics. <i>Science of the Total Environment</i> , 2020 , 724, 138257	10.2	8
48	Species-dependent toxicity, accumulation, and subcellular partitioning of cadmium in combination with tetrabromobisphenol A in earthworms. <i>Chemosphere</i> , 2018 , 210, 1042-1050	8.4	8
47	Degradation of methyl blue using Fe-tourmaline as a novel photocatalyst. <i>Molecules</i> , 2013 , 18, 1457-63	4.8	8
46	Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy. <i>Nature Nanotechnology</i> , 2021 ,	28.7	8
45	Degradation of Bisphenol S by a Bacterial Consortium Enriched from River Sediments. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2019 , 103, 630-635	2.7	7
44	Release of tetrabromobisphenol A (TBBPA)-derived non-extractable residues in oxic soil and the effects of the TBBPA-degrading bacterium Ochrobactrum sp. strain T. <i>Journal of Hazardous Materials</i> , 2019 , 378, 120666	12.8	7
43	Effects of veterinary antibiotics on the fate and persistence of 17Eestradiol in swine manure. Journal of Hazardous Materials, 2019 , 375, 198-205	12.8	7
42	Dissipation, transformation and accumulation of triclosan in soil-earthworm system and effects of biosolids application. <i>Science of the Total Environment</i> , 2020 , 712, 136563	10.2	7
41	The bioaccumulation, elimination, and trophic transfer of BDE-47 in the aquatic food chain of Chlorella pyrenoidosa-Daphnia magna. <i>Environmental Pollution</i> , 2020 , 258, 113720	9.3	7
40	Thorough utilization of rice husk: metabolite extracts for silver nanocomposite biosynthesis and residues for silica nanomaterials fabrication. <i>New Journal of Chemistry</i> , 2019 , 43, 9201-9209	3.6	6
39	C-Labelling of the natural steroid estrogens 17 Estradiol, 17 Estradiol, and estrone. <i>Journal of Hazardous Materials</i> , 2019 , 375, 26-32	12.8	6
38	Fate of bisphenol S (BPS) and characterization of non-extractable residues in soil: Insights into persistence of BPS. <i>Environment International</i> , 2020 , 143, 105908	12.9	6
37	Elevated tropospheric CO and O concentrations impair organic pollutant removal from grassland soil. <i>Scientific Reports</i> , 2018 , 8, 5519	4.9	6
36	Interactions between m-phenylenediamine and bovine serum albumin measured by spectroscopy. <i>Luminescence</i> , 2013 , 28, 226-31	2.5	6
35	Synthesis of 13C- and 14C-labelled catechol. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> , 2002 , 45, 551-558	1.9	6
34	How do humans recognize and face challenges of microplastic pollution in marine environments? A bibliometric analysis. <i>Environmental Pollution</i> , 2021 , 280, 116959	9.3	6
33	Influence of the geophagous earthworm Aporrectodea sp. on fate of bisphenol A and a branched 4-nonylphenol isomer in soil. <i>Science of the Total Environment</i> , 2019 , 693, 133574	10.2	5
32	Fate of 4-bromodiphenyl ether (BDE3) in soil and the effects of co-existed copper. <i>Environmental Pollution</i> , 2020 , 261, 114214	9.3	4

31	Fate of lower-brominated diphenyl ethers (LBDEs) in a red soil - Application of C-labelling. <i>Science of the Total Environment</i> , 2020 , 721, 137735	10.2	4
30	Synthesis and characterization of 14C-labelled sulfate conjugates of steroid oestrogens. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> , 2014 , 57, 470-6	1.9	4
29	Biochar Fine Particles Enhance Uptake of Benzo(a)pyrene to Macrophages and Epithelial Cells via Different Mechanisms. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 218-223	11	4
28	Aging Processes of Polyethylene Mulch Films and Preparation of Microplastics with Environmental Characteristics. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2021 , 107, 736-740	2.7	4
27	Influences of perfluorooctanoic acid on the aggregation of multi-walled carbon nanotubes. <i>Journal of Environmental Sciences</i> , 2013 , 25, 466-72	6.4	3
26	Effects of fulvic substances on the distribution and migration of Hg in landfill leachate. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 1464-9		3
25	Cadmium Accumulation Kinetics in Rhodococcus jostii RHA1 and Potential Effects of Brominated Flame Retardants. <i>Water, Air, and Soil Pollution</i> , 2016 , 227, 1	2.6	3
24	Elevated CO2 accelerates polycyclic aromatic hydrocarbon accumulation in a paddy soil grown with rice. <i>PLoS ONE</i> , 2018 , 13, e0196439	3.7	3
23	MoS Nanosheets-Cyanobacteria Interaction: Reprogrammed Carbon and Nitrogen Metabolism. <i>ACS Nano</i> , 2021 , 15, 16344-16356	16.7	3
22	Soil-specific effects of urea addition on mineralization of aromatic and proteinaceous components of humic-like substances in three agricultural soils. <i>Biology and Fertility of Soils</i> , 2015 , 51, 615-623	6.1	2
21	Transformation of catechol coupled to redox alteration of humic acids and the effects of Cu and Fe cations. <i>Science of the Total Environment</i> , 2020 , 725, 138245	10.2	2
20	Degradation and transformation of nitrated nonylphenol isomers in activated sludge under nitrifying and heterotrophic conditions. <i>Journal of Hazardous Materials</i> , 2020 , 393, 122438	12.8	2
19	Photocatalytic degradation of methyl blue by tourmaline-coated TiO2 nanoparticles. <i>Desalination and Water Treatment</i> , 2016 , 57, 19292-19300		2
18	Synthesis of [uniformly ring-14C]-labelled 4-hydroxybenzaldehyde, vanillin, and protocatechualdehyde. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> , 2004 , 47, 209-216	1.9	2
17	Environmental implications of MoS nanosheets on rice and associated soil microbial communities. <i>Chemosphere</i> , 2021 , 291, 133004	8.4	2
16	Long-Term Field Study on Fate, Transformation, and Vertical Transport of Tetrabromobisphenol A in Soil-Plant Systems. <i>Environmental Science & Environmental Science & Environ</i>	10.3	2
15	Elevated CO concentration modifies the effects of organic fertilizer substitution on rice yield and soil ARGs. <i>Science of the Total Environment</i> , 2021 , 754, 141898	10.2	2
14	Accumulation and Transformation of 2,2R4,4RTetrabrominated Diphenyl Ether (BDE47) by the Earthworm Metaphire vulgaris in Soil. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2020 , 104, 701-706	2.7	1

LIST OF PUBLICATIONS

13	Abiotic association of phthalic acid esters with humic acid of a sludge landfill. <i>Frontiers of Environmental Science and Engineering</i> , 2012 , 6, 778-783	5.8	1
12	The Co-application of Willow and Earthworms/Horseradish for Removal of Pentachlorophenol from Contaminated Soils. <i>Soil and Sediment Contamination</i> , 2013 , 22, 498-509	3.2	1
11	CuO nanoparticles modify bioaccumulation of perfluorooctanoic acid in radish (Raphanus sativus L.). Environmental Pollutants and Bioavailability, 2022 , 34, 34-41	2.8	1
10	Quantification of polystyrene plastics degradation using C isotope tracer technique. <i>Methods in Enzymology</i> , 2021 , 648, 121-136	1.7	1
9	Degradation, transformation, and non-extractable residue formation of nitrated nonylphenol isomers in an oxic soil. <i>Environmental Pollution</i> , 2021 , 289, 117880	9.3	1
8	Synthesis of typical sulfonamide antibiotics with [C]- and [C]-labeling on the phenyl ring for use in environmental studies <i>Environmental Sciences Europe</i> , 2022 , 34, 23	5	1
7	Effects of nano- and microplastics on the bioaccumulation and distribution of phenanthrene in the soil feeding earthworm Metaphire guillelmi <i>Science of the Total Environment</i> , 2022 , 155125	10.2	1
6	Polystyrene Nanoplastics Inhibit the Transformation of Tetrabromobisphenol A by the Bacterium ACS Nano, 2021 ,	16.7	1
5	Fate of 2,4,6-Tribromophenol in Soil Under Different Redox Conditions. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2020 , 104, 707-713	2.7	O
4	Influence of Tubificidae Limnodrilus and electron acceptors on the environmental fate of BDE-47 in sediments by (14)C-labelling. <i>Environmental Pollution</i> , 2021 , 288, 117737	9.3	O
3	Formation and nature of non-extractable residues of emerging organic contaminants in humic acids catalyzed by laccase <i>Science of the Total Environment</i> , 2022 , 154300	10.2	0
2	Fate of Several Typical Organic Pollutants in Soil and Impacts of Earthworms and Plants 2018 , 575-589		

Effects of Black Carbon and Earthworms on the Degradation and Residual Distribution of 14C-2,4-Dichlorophenol and 14C-Phenanthrene in Soil **2013**, 965-969