

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3221075/publications.pdf Version: 2024-02-01

RONC I

#	Article	IF	CITATIONS
1	How relevant is recalcitrance for the stabilization of organic matter in soils?. Journal of Plant Nutrition and Soil Science, 2008, 171, 91-110.	1.1	586
2	TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 2011, 13, 822.	2.1	482
3	Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. Environmental Pollution, 2016, 219, 166-173.	3.7	463
4	Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Science of the Total Environment, 2020, 703, 134699.	3.9	409
5	Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. Journal of Agricultural and Food Chemistry, 2020, 68, 1935-1947.	2.4	363
6	Aging Significantly Affects Mobility and Contaminant-Mobilizing Ability of Nanoplastics in Saturated Loamy Sand. Environmental Science & Technology, 2019, 53, 5805-5815.	4.6	258
7	Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. Plant Physiology and Biochemistry, 2017, 110, 210-225.	2.8	230
8	Polystyrene Nanoplastics-Enhanced Contaminant Transport: Role of Irreversible Adsorption in Glassy Polymeric Domain. Environmental Science & Technology, 2018, 52, 2677-2685.	4.6	185
9	Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. Science of the Total Environment, 2020, 748, 142427.	3.9	183
10	Metabolomics Reveals How Cucumber (<i>Cucumis sativus</i>) Reprograms Metabolites To Cope with Silver Ions and Silver Nanoparticle-Induced Oxidative Stress. Environmental Science & Technology, 2018, 52, 8016-8026.	4.6	165
11	Physiological and Biochemical Changes Imposed by CeO ₂ Nanoparticles on Wheat: A Life Cycle Field Study. Environmental Science & Technology, 2015, 49, 11884-11893.	4.6	164
12	Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Research, 2013, 47, 2497-2506.	5.3	148
13	Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Global Change Biology, 2015, 21, 4076-4085.	4.2	134
14	Degradation, Metabolism, and Bound-Residue Formation and Release of Tetrabromobisphenol A in Soil during Sequential Anoxic–Oxic Incubation. Environmental Science & Technology, 2013, 47, 8348-8354.	4.6	126
15	Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination. Nature Communications, 2022, 13, .	5.8	117
16	Metabolomics Reveals the "Invisible―Responses of Spinach Plants Exposed to CeO ₂ Nanoparticles. Environmental Science & Technology, 2019, 53, 6007-6017.	4.6	115
17	Silver Nanoparticles Alter Soil Microbial Community Compositions and Metabolite Profiles in Unplanted and Cucumber-Planted Soils. Environmental Science & Technology, 2020, 54, 3334-3342.	4.6	113
18	Solution by dilution?—A review on the pollution status of the Yangtze River. Environmental Science and Pollution Research, 2013, 20, 6934-6971.	2.7	108

#	Article	IF	CITATIONS
19	Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment. Chemosphere, 2010, 80, 1399-1405.	4.2	105
20	Degradation and Metabolism of Tetrabromobisphenol A (TBBPA) in Submerged Soil and Soil–Plant Systems. Environmental Science & Technology, 2014, 48, 14291-14299.	4.6	98
21	Elevated CO ₂ Levels Affects the Concentrations of Copper and Cadmium in Crops Grown in Soil Contaminated with Heavy Metals under Fully Open-Air Field Conditions. Environmental Science & Technology, 2011, 45, 6997-7003.	4.6	94
22	A carbon-14 radiotracer-based study on the phototransformation of polystyrene nanoplastics in water <i>versus</i> in air. Environmental Science: Nano, 2019, 6, 2907-2917.	2.2	92
23	Metabolomics reveals that engineered nanomaterial exposure in soil alters both soil rhizosphere metabolite profiles and maize metabolic pathways. Environmental Science: Nano, 2019, 6, 1716-1727.	2.2	92
24	Isomer-Specific Degradation of Branched and Linear 4-Nonylphenol Isomers in an Oxic Soil. Environmental Science & Technology, 2011, 45, 8283-8289.	4.6	90
25	Oxidative stress responses and insights into the sensitivity of the earthworms Metaphire guillelmi and Eisenia fetida to soil cadmium. Science of the Total Environment, 2017, 574, 300-306.	3.9	84
26	Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy. Nature Nanotechnology, 2022, 17, 76-85.	15.6	82
27	Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment. New Biotechnology, 2017, 38, 101-105.	2.4	81
28	Foliar Application of SiO ₂ Nanoparticles Alters Soil Metabolite Profiles and Microbial Community Composition in the Pakchoi (<i>Brassica chinensis</i> L.) Rhizosphere Grown in Contaminated Mine Soil. Environmental Science & Technology, 2020, 54, 13137-13146.	4.6	78
29	Photodegradation of carbon dots cause cytotoxicity. Nature Communications, 2021, 12, 812.	5.8	78
30	Fate of Tetrabromobisphenol A (TBBPA) and Formation of Ester- and Ether-Linked Bound Residues in an Oxic Sandy Soil. Environmental Science & Technology, 2015, 49, 12758-12765.	4.6	77
31	Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biology and Biochemistry, 2000, 32, 1281-1291.	4.2	73
32	Enhanced Transport of Phenanthrene and 1-Naphthol by Colloidal Graphene Oxide Nanoparticles in Saturated Soil. Environmental Science & Technology, 2014, 48, 10136-10144.	4.6	73
33	Removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from water by carbonaceous nanomaterials: A review. Critical Reviews in Environmental Science and Technology, 2020, 50, 2379-2414.	6.6	71
34	Selective digestion of the proteinaceous component of humic substances by the geophagous earthworms Metaphire guillelmi and Amynthas corrugatus. Soil Biology and Biochemistry, 2010, 42, 1455-1462.	4.2	70
35	Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Nanotoxicology, 2016, 10, 1207-1214.	1.6	70
36	Species-dependent effects of biochar amendment on bioaccumulation of atrazine in earthworms. Environmental Pollution, 2014, 186, 241-247.	3.7	67

#	Article	IF	CITATIONS
37	Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Science of the Total Environment, 2021, 752, 142264.	3.9	67
38	Mn ₃ O ₄ nanozymes boost endogenous antioxidant metabolites in cucumber (<i>Cucumis sativus</i>) plant and enhance resistance to salinity stress. Environmental Science: Nano, 2020, 7, 1692-1703.	2.2	66
39	Birnessite-Induced Binding of Phenolic Monomers to Soil Humic Substances and Nature of the Bound Residues. Environmental Science & Technology, 2012, 46, 8843-8850.	4.6	65
40	Metal nanoparticles by doping carbon nanotubes improved the sorption of perfluorooctanoic acid. Journal of Hazardous Materials, 2018, 351, 206-214.	6.5	64
41	Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biology and Biochemistry, 2005, 37, 1648-1655.	4.2	63
42	Microplastics in agricultural soils: sources, effects, and their fate. Current Opinion in Environmental Science and Health, 2022, 25, 100311.	2.1	61
43	Nitrogen Mineralization, Ammonia Accumulation, and Emission of Gaseous NH3 by Soil-feeding Termites. Biogeochemistry, 2006, 78, 267-283.	1.7	60
44	Fate and metabolism of tetrabromobisphenol A in soil slurries without and with the amendment with the alkylphenol degrading bacterium Sphingomonas sp. strain TTNP3. Environmental Pollution, 2014, 193, 181-188.	3.7	60
45	Differential effects of copper nanoparticles/microparticles in agronomic and physiological parameters of oregano (Origanum vulgare). Science of the Total Environment, 2018, 618, 306-312.	3.9	59
46	Transformation and mineralization of 14 C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes orthognathus. Biology and Fertility of Soils, 2001, 33, 166-174.	2.3	58
47	Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. Science of the Total Environment, 2017, 578, 408-416.	3.9	58
48	Fate in soil of ¹⁴ C-sulfadiazine residues contained in the manure of young pigs treated with a veterinary antibiotic. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 43, 8-20.	0.7	57
49	Antioxidant and gene expression responses of Eisenia fetida following repeated exposure to BDE209 and Pb in a soil-earthworm system. Science of the Total Environment, 2016, 556, 163-168.	3.9	57
50	Bioaccumulation and Bound-Residue Formation of a Branched 4-Nonylphenol Isomer in the Geophagous Earthworm <i>Metaphire guillelmi</i> in a Rice Paddy Soil. Environmental Science & Technology, 2010, 44, 4558-4563.	4.6	56
51	Fate and O-methylating detoxification of Tetrabromobisphenol A (TBBPA) in two earthworms (Metaphire guillelmi and Eisenia fetida). Environmental Pollution, 2017, 227, 526-533.	3.7	56
52	Low Concentrations of Silver Nanoparticles and Silver Ions Perturb the Antioxidant Defense System and Nitrogen Metabolism in N ₂ -Fixing Cyanobacteria. Environmental Science & Technology, 2020, 54, 15996-16005.	4.6	56
53	Physiological and metabolic responses of maize (Zea mays) plants to Fe3O4 nanoparticles. Science of the Total Environment, 2020, 718, 137400.	3.9	54
54	The degradation of α-quaternary nonylphenol isomers by Sphingomonas sp. strain TTNP3 involves a type II ipso-substitution mechanism. Applied Microbiology and Biotechnology, 2006, 70, 114-122.	1.7	53

#	Article	IF	CITATIONS
55	Enhanced Transformation of Tetrabromobisphenol A by Nitrifiers in Nitrifying Activated Sludge. Environmental Science & Technology, 2015, 49, 4283-4292.	4.6	53
56	C60 Fullerols Enhance Copper Toxicity and Alter the Leaf Metabolite and Protein Profile in Cucumber. Environmental Science & Technology, 2019, 53, 2171-2180.	4.6	53
57	Effects of biochar on the transformation and earthworm bioaccumulation of organic pollutants in soil. Chemosphere, 2016, 145, 431-437.	4.2	51
58	Biochar, activated carbon and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil. Scientific Reports, 2015, 5, 16000.	1.6	48
59	Improving removal of antibiotics in constructed wetland treatment systems based on key design and operational parameters: A review. Journal of Hazardous Materials, 2021, 407, 124386.	6.5	48
60	Physicochemical factors controlling the retention and transport of perfluorooctanoic acid (PFOA) in saturated sand and limestone porous media. Water Research, 2018, 141, 251-258.	5.3	46
61	Release of polycyclic aromatic hydrocarbons from biochar fine particles in simulated lung fluids: Implications for bioavailability and risks of airborne aromatics. Science of the Total Environment, 2019, 655, 1159-1168.	3.9	46
62	Digestion and residue stabilization of bacterial and fungal cells, protein, peptidoglycan, and chitin by the geophagous earthworm Metaphire guillelmi. Soil Biology and Biochemistry, 2013, 64, 9-17.	4.2	45
63	Transport and retention of perfluorooctanoic acid (PFOA) in natural soils: Importance of soil organic matter and mineral contents, and solution ionic strength. Journal of Contaminant Hydrology, 2019, 225, 103477.	1.6	45
64	Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii. Aquatic Toxicology, 2014, 157, 167-174.	1.9	44
65	Bioaccumulation and elimination of bisphenol a (BPA) in the alga Chlorella pyrenoidosa and the potential for trophic transfer to the rotifer Brachionus calyciflorus. Environmental Pollution, 2017, 227, 460-467.	3.7	42
66	In-situ immobilization of cadmium-polluted upland soil: A ten-year field study. Ecotoxicology and Environmental Safety, 2021, 207, 111275.	2.9	40
67	Contributions of ryegrass, lignin and rhamnolipid to polycyclic aromatic hydrocarbon dissipation in an arable soil. Soil Biology and Biochemistry, 2018, 118, 27-34.	4.2	39
68	Quantifying the bioaccumulation of nanoplastics and PAHs in the clamworm Perinereis aibuhitensis. Science of the Total Environment, 2019, 655, 591-597.	3.9	39
69	Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termite. Archives of Microbiology, 2006, 187, 15-27.	1.0	38
70	Elevated CO2 levels increase the toxicity of ZnO nanoparticles to goldfish (Carassius auratus) in a water-sediment ecosystem. Journal of Hazardous Materials, 2017, 327, 64-70.	6.5	38
71	Transcriptome Reveals the Rice Response to Elevated Free Air CO ₂ Concentration and TiO ₂ Nanoparticles. Environmental Science & Technology, 2019, 53, 11714-11724.	4.6	38
72	Key Physicochemical Properties Dictating Gastrointestinal Bioaccessibility of Microplastics-Associated Organic Xenobiotics: Insights from a Deep Learning Approach. Environmental Science & Technology, 2020, 54, 12051-12062.	4.6	38

#	Article	IF	CITATIONS
73	Labelâ€Free Imaging of Nanoparticle Uptake Competition in Single Cells by Hyperspectral Stimulated Raman Scattering. Small, 2018, 14, 1703246.	5.2	37
74	Microbial communities in the rhizosphere of different willow genotypes affect phytoremediation potential in Cd contaminated soil. Science of the Total Environment, 2021, 769, 145224.	3.9	37
75	Effects of microcystin-LR on the metal bioaccumulation and toxicity in Chlamydomonas reinhardtii. Water Research, 2012, 46, 369-377.	5.3	36
76	Response of soil microbial communities to engineered nanomaterials in presence of maize (Zea mays L.) plants. Environmental Pollution, 2020, 267, 115608.	3.7	36
77	Removal of carbofuran from aqueous solution by orange peel. Desalination and Water Treatment, 2012, 49, 106-114.	1.0	35
78	Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D) by Novel Photocatalytic Material of Tourmaline-Coated TiO2 Nanoparticles: Kinetic Study and Model. Materials, 2013, 6, 1530-1542.	1.3	35
79	Aging Processes of Polyethylene Mulch Films and Preparation of Microplastics with Environmental Characteristics. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 736-740.	1.3	34
80	High-Throughput Screening for Engineered Nanoparticles That Enhance Photosynthesis Using Mesophyll Protoplasts. Journal of Agricultural and Food Chemistry, 2020, 68, 3382-3389.	2.4	34
81	Abiotic association of soil-borne monomeric phenols with humic acids. Organic Geochemistry, 2005, 36, 583-593.	0.9	33
82	Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: a 15N-based approach. Biogeochemistry, 2011, 103, 355-369.	1.7	33
83	Comparative evaluation of nonylphenol isomers on steroidogenesis of rat Leydig Cells. Toxicology in Vitro, 2012, 26, 1114-1121.	1.1	33
84	Improved sorption of perfluorooctanoic acid on carbon nanotubes hybridized by metal oxide nanoparticles. Environmental Science and Pollution Research, 2018, 25, 15507-15517.	2.7	33
85	Response of cucumber (Cucumis sativus) to perfluorooctanoic acid in photosynthesis and metabolomics. Science of the Total Environment, 2020, 724, 138257.	3.9	33
86	Synthesis and characterization of specifically 14C-labeled humic model compounds for feeding trials with soil-feeding termites. Soil Biology and Biochemistry, 2000, 32, 1271-1280.	4.2	32
87	The fate of catechol in soil as affected by earthworms and clay. Soil Biology and Biochemistry, 2009, 41, 330-339.	4.2	32
88	Insights into tetrabromobisphenol A adsorption onto soils: Effects of soil components and environmental factors. Science of the Total Environment, 2015, 536, 582-588.	3.9	31
89	Oxidation of benzo[a]pyrene by laccase in soil enhances bound residue formation and reduces disturbance to soil bacterial community composition. Environmental Pollution, 2018, 242, 462-469.	3.7	31
90	Polystyrene microplastics alleviate the effects of sulfamethazine on soil microbial communities at different CO2 concentrations. Journal of Hazardous Materials, 2021, 413, 125286.	6.5	30

#	Article	IF	CITATIONS
91	Ethyl lactate-EDTA composite system enhances the remediation of the cadmium-contaminated soil by Autochthonous Willow (Salix×aureo-pendula CL â€~J1011') in the lower reaches of the Yangtze River. Journal of Hazardous Materials, 2010, 181, 673-678.	6.5	29
92	Degradation and bound-residue formation of nonylphenol in red soil and the effects of ammonium. Environmental Pollution, 2014, 186, 83-89.	3.7	28
93	Effects of the geophagous earthworm Metaphire guillelmi on sorption, mineralization, and bound-residue formation of 4-nonylphenol in an agricultural soil. Environmental Pollution, 2014, 189, 202-207.	3.7	28
94	MoS ₂ Nanosheets–Cyanobacteria Interaction: Reprogrammed Carbon and Nitrogen Metabolism. ACS Nano, 2021, 15, 16344-16356.	7.3	28
95	Enhancement of chlorophenol sorption on soil by geophagous earthworms (Metaphire guillelmi). Chemosphere, 2011, 82, 156-162.	4.2	27
96	Surface-associated metal catalyst enhances the sorption of perfluorooctanoic acid to multi-walled carbon nanotubes. Journal of Colloid and Interface Science, 2012, 377, 342-346.	5.0	27
97	Inhibitory effects of carbon nanotubes on the degradation of 14C-2,4-dichlorophenol in soil. Chemosphere, 2013, 90, 527-534.	4.2	27
98	Fate of phenanthrene and mineralization of its non-extractable residues in an oxic soil. Environmental Pollution, 2017, 224, 377-383.	3.7	27
99	Bioaccumulation, physiological distribution, and biotransformation of tetrabromobisphenol a (TBBPA) in the geophagous earthworm Metaphire guillelmi – hint for detoxification strategy. Journal of Hazardous Materials, 2020, 388, 122027.	6.5	27
100	Fate of bisphenol S (BPS) and characterization of non-extractable residues in soil: Insights into persistence of BPS. Environment International, 2020, 143, 105908.	4.8	27
101	Synthesis of [13C]- and [14C]-labeled phenolic humus and lignin monomers. Chemosphere, 2005, 60, 1169-1181.	4.2	26
102	Photocatalytic mineralization of dimethoate in aqueous solutions using TiO2: Parameters and by-products analysis. Desalination, 2010, 258, 28-33.	4.0	26
103	Stimulation of Tetrabromobisphenol A Binding to Soil Humic Substances by Birnessite and the Chemical Structure of the Bound Residues. Environmental Science & Technology, 2016, 50, 6257-6266.	4.6	26
104	Role of dissolved humic acids in the biodegradation of a single isomer of nonylphenol by Sphingomonas sp Chemosphere, 2007, 68, 2172-2180.	4.2	25
105	Sorption of a branched nonylphenol and perfluorooctanoic acid on Yangtze River sediments and their model components. Journal of Environmental Monitoring, 2012, 14, 2653.	2.1	24
106	Effects of the earthworm Metaphire guillelmi on the mineralization, metabolism, and bound-residue formation of tetrabromobisphenol A (TBBPA) in soil. Science of the Total Environment, 2017, 595, 528-536.	3.9	24
107	Importance of surface roughness on perï¬,uorooctanoic acid (PFOA) transport in unsaturated porous media. Environmental Pollution, 2020, 266, 115343.	3.7	24
108	How do humans recognize and face challenges of microplastic pollution in marine environments? A bibliometric analysis. Environmental Pollution, 2021, 280, 116959.	3.7	24

#	Article	IF	CITATIONS
109	Toxicity of combined chromium(VI) and phenanthrene pollution on the seed germination, stem lengths, and fresh weights of higher plants. Environmental Science and Pollution Research, 2016, 23, 15227-15235.	2.7	23
110	The bioaccumulation, elimination, and trophic transfer of BDE-47 in the aquatic food chain of Chlorella pyrenoidosa-Daphnia magna. Environmental Pollution, 2020, 258, 113720.	3.7	23
111	Response of soil bacterial communities to sulfadiazine present in manure: Protection and adaptation mechanisms of extracellular polymeric substances. Journal of Hazardous Materials, 2021, 408, 124887.	6.5	23
112	Polystyrene Nanoplastics Inhibit the Transformation of Tetrabromobisphenol A by the Bacterium <i>Rhodococcus jostii</i> . ACS Nano, 2022, 16, 405-414.	7.3	23
113	Dynamics in composition and size-class distribution of humic substances in profundal sediments of Lake Constance. Organic Geochemistry, 2001, 32, 3-10.	0.9	22
114	Metabolism of a nonylphenol isomer by Sphingomonas sp. strain TTNP3. Environmental Chemistry Letters, 2005, 2, 185-189.	8.3	22
115	Heavy metals in face paints: Assessment of the health risks to Chinese opera actors. Science of the Total Environment, 2020, 724, 138163.	3.9	21
116	Environmental implications of MoS2 nanosheets on rice and associated soil microbial communities. Chemosphere, 2022, 291, 133004.	4.2	21
117	Fate and metabolism of the brominated flame retardant tetrabromobisphenol A (TBBPA) in rice cell suspension culture. Environmental Pollution, 2016, 214, 299-306.	3.7	20
118	Formation, characterization, and mineralization of bound residues of tetrabromobisphenol A (TBBPA) in silty clay soil under oxic conditions. Science of the Total Environment, 2017, 599-600, 332-339.	3.9	20
119	Risk assessment of engineered nanoparticles and other contaminants in terrestrial plants. Current Opinion in Environmental Science and Health, 2018, 6, 21-28.	2.1	20
120	Environmental fate of phenanthrene in lysimeter planted with wheat and rice in rotation. Journal of Hazardous Materials, 2011, 188, 408-413.	6.5	19
121	Effect of structural composition of humic acids on the sorption of a branched nonylphenol isomer. Chemosphere, 2011, 84, 409-414.	4.2	19
122	Fate and Ecological Effects of Decabromodiphenyl Ether in a Field Lysimeter. Environmental Science & Technology, 2013, 47, 9167-9174.	4.6	19
123	CdS nanoparticles in soil induce metabolic reprogramming in broad bean (<i>Vicia faba</i> L.) roots and leaves. Environmental Science: Nano, 2020, 7, 93-104.	2.2	19
124	Abiotic association of PAEs with humic substances and its influence on the fate of PAEs in landfill leachate. Chemosphere, 2010, 78, 1362-1367.	4.2	18
125	Facile synthesis of 55Fe-labeled well-dispersible hematite nanoparticles for bioaccumulation studies in nanotoxicology. Environmental Pollution, 2016, 213, 801-808.	3.7	18
126	Transformation of tetrabromobisphenol A by Rhodococcus jostii RHA1: Effects of heavy metals. Chemosphere, 2018, 196, 206-213.	4.2	17

#	Article	IF	CITATIONS
127	Effects of 17β-estradiol and 17α-ethinylestradiol on the embryonic development of the clearhead icefish (Protosalanx hyalocranius). Chemosphere, 2017, 176, 18-24.	4.2	16
128	Effects of veterinary antibiotics on the fate and persistence of 17β-estradiol in swine manure. Journal of Hazardous Materials, 2019, 375, 198-205.	6.5	16
129	Release of tetrabromobisphenol A (TBBPA)-derived non-extractable residues in oxic soil and the effects of the TBBPA-degrading bacterium Ochrobactrum sp. strain T. Journal of Hazardous Materials, 2019, 378, 120666.	6.5	15
130	Fate of 14C-bisphenol F isomers in an oxic soil and the effects of earthworm. Science of the Total Environment, 2019, 657, 254-261.	3.9	15
131	Biochar Fine Particles Enhance Uptake of Benzo(a)pyrene to Macrophages and Epithelial Cells via Different Mechanisms. Environmental Science and Technology Letters, 2021, 8, 218-223.	3.9	15
132	Effects of biochar and the geophagous earthworm Metaphire guillelmi on fate of 14C-catechol in an agricultural soil. Chemosphere, 2014, 107, 109-114.	4.2	14
133	Degradation of Bisphenol S by a Bacterial Consortium Enriched from River Sediments. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 630-635.	1.3	14
134	Dissipation, transformation and accumulation of triclosan in soil-earthworm system and effects of biosolids application. Science of the Total Environment, 2020, 712, 136563.	3.9	14
135	Phytoremediation of soils contaminated with phenanthrene and cadmium by growing willow (Salix×Aureo-PendulaCL 'j1011'). International Journal of Phytoremediation, 2016, 18, 150-156.	1.7	13
136	Effects of Cu2+ and humic acids on degradation and fate of TBBPA in pure culture of Pseudomonas sp. strain CDT. Journal of Environmental Sciences, 2017, 62, 60-67.	3.2	13
137	Species-dependent toxicity, accumulation, and subcellular partitioning of cadmium in combination with tetrabromobisphenol A in earthworms. Chemosphere, 2018, 210, 1042-1050.	4.2	13
138	Single particle ICP-MS and GC-MS provide a new insight into the formation mechanisms during the green synthesis of AgNPs. New Journal of Chemistry, 2019, 43, 3946-3955.	1.4	13
139	Mobilization of soil phosphorus during passage through the gut of larvae of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Plant and Soil, 2006, 288, 263-270.	1.8	12
140	Elevated CO2 concentration modifies the effects of organic fertilizer substitution on rice yield and soil ARGs. Science of the Total Environment, 2021, 754, 141898.	3.9	12
141	Fate of a branched nonylphenol isomer in submerged paddy soils amended with nitrate. Water Research, 2008, 42, 4802-4808.	5.3	11
142	Effects of nano- and microplastics on the bioaccumulation and distribution of phenanthrene in the soil feeding earthworm Metaphire guillelmi. Science of the Total Environment, 2022, 834, 155125.	3.9	11
143	Degradation of Methyl Blue Using Fe-Tourmaline as a Novel Photocatalyst. Molecules, 2013, 18, 1457-1463.	1.7	10
144	Influence of the geophagous earthworm Aporrectodea sp. on fate of bisphenol A and a branched 4-nonylphenol isomer in soil. Science of the Total Environment, 2019, 693, 133574.	3.9	10

#	Article	IF	CITATIONS
145	Species-dependent effects of earthworms on the fates and bioavailability of tetrabromobisphenol A and cadmium coexisted in soils. Science of the Total Environment, 2019, 658, 1416-1422.	3.9	10
146	14C-Labelling of the natural steroid estrogens 17α-estradiol, 17β-estradiol, and estrone. Journal of Hazardous Materials, 2019, 375, 26-32.	6.5	9
147	Trophic transfer and environmental safety of carbon dots from microalgae to Daphnia. Science of the Total Environment, 2022, 844, 157201.	3.9	9
148	Thorough utilization of rice husk: metabolite extracts for silver nanocomposite biosynthesis and residues for silica nanomaterials fabrication. New Journal of Chemistry, 2019, 43, 9201-9209.	1.4	8
149	Synthesis of13C- and14C-labelled catechol. Journal of Labelled Compounds and Radiopharmaceuticals, 2002, 45, 551-558.	0.5	7
150	Elevated tropospheric CO2 and O3 concentrations impair organic pollutant removal from grassland soil. Scientific Reports, 2018, 8, 5519.	1.6	7
151	Interactions between <i>m</i> â€phenylenediamine and bovine serum albumin measured by spectroscopy. Luminescence, 2013, 28, 226-231.	1.5	6
152	Fate of 4-bromodiphenyl ether (BDE3) in soil and the effects of co-existed copper. Environmental Pollution, 2020, 261, 114214.	3.7	6
153	Effects of fulvic substances on the distribution and migration of Hg in landfill leachate. Journal of Environmental Monitoring, 2011, 13, 1464.	2.1	5
154	Synthesis and characterization of ¹⁴ C″abelled sulfate conjugates of steroid oestrogens. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 470-476.	0.5	5
155	Accumulation and Transformation of 2,2',4,4'-Tetrabrominated Diphenyl Ether (BDE47) by the Earthworm Metaphire vulgaris in Soil. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 701-706.	1.3	5
156	Fate of lower-brominated diphenyl ethers (LBDEs) in a red soil – Application of 14C-labelling. Science of the Total Environment, 2020, 721, 137735.	3.9	5
157	Long-Term Field Study on Fate, Transformation, and Vertical Transport of Tetrabromobisphenol A in Soil–Plant Systems. Environmental Science & Technology, 2021, 55, 4607-4615.	4.6	5
158	CuO nanoparticles modify bioaccumulation of perfluorooctanoic acid in radish (<i>Raphanus) Tj ETQq0 0 0 rgBT</i>	/Overlock	19 Tf 50 222
159	Influences of perfluorooctanoic acid on the aggregation of multi-walled carbon nanotubes. Journal of Environmental Sciences, 2013, 25, 466-472.	3.2	4
160	Elevated CO2 accelerates polycyclic aromatic hydrocarbon accumulation in a paddy soil grown with rice. PLoS ONE, 2018, 13, e0196439.	1.1	4
161	Degradation and transformation of nitrated nonylphenol isomers in activated sludge under nitrifying and heterotrophic conditions. Journal of Hazardous Materials, 2020, 393, 122438.	6.5	4

¹⁶²Quantification of polystyrene plastics degradation using 14C isotope tracer technique. Methods in
Enzymology, 2021, 648, 121-136.0.44

#	Article	IF	CITATIONS
163	Degradation, transformation, and non-extractable residue formation of nitrated nonylphenol isomers in an oxic soil. Environmental Pollution, 2021, 289, 117880.	3.7	4
164	Formation and nature of non-extractable residues of emerging organic contaminants in humic acids catalyzed by laccase. Science of the Total Environment, 2022, 829, 154300.	3.9	4
165	Abiotic association of phthalic acid esters with humic acid of a sludge landfill. Frontiers of Environmental Science and Engineering, 2012, 6, 778-783.	3.3	3
166	Soil-specific effects of urea addition on mineralization of aromatic and proteinaceous components of humic-like substances in three agricultural soils. Biology and Fertility of Soils, 2015, 51, 615-623.	2.3	3
167	Cadmium Accumulation Kinetics in Rhodococcus jostii RHA1 and Potential Effects of Brominated Flame Retardants. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	3
168	Transformation of catechol coupled to redox alteration of humic acids and the effects of Cu and Fe cations. Science of the Total Environment, 2020, 725, 138245.	3.9	3
169	Synthesis of typical sulfonamide antibiotics with [14C]- and [13C]-labeling on the phenyl ring for use in environmental studies. Environmental Sciences Europe, 2022, 34, 23.	2.6	3
170	Synthesis of[uniformly ring-14C]-labelled 4-hydroxybenzaldehyde, vanillin, and protocatechualdehyde. Journal of Labelled Compounds and Radiopharmaceuticals, 2004, 47, 209-216.	0.5	2
171	The Co-application of Willow and Earthworms/Horseradish for Removal of Pentachlorophenol from Contaminated Soils. Soil and Sediment Contamination, 2013, 22, 498-509.	1.1	2
172	Photocatalytic degradation of methyl blue by tourmaline-coated TiO ₂ nanoparticles. Desalination and Water Treatment, 2016, 57, 19292-19300.	1.0	2
173	Fate of 2,4,6-Tribromophenol in Soil Under Different Redox Conditions. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 707-713.	1.3	2
174	Influence of Tubificidae Limnodrilus and electron acceptors on the environmental fate of BDE-47 in sediments by (14)C-labelling. Environmental Pollution, 2021, 288, 117737.	3.7	2
175	Fate of Several Typical Organic Pollutants in Soil and Impacts of Earthworms and Plants. , 2018, , 575-589.		0