
Karen L Elliott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3220999/publications.pdf Version: 2024-02-01

KADEN L FLUOTT

#	Article	IF	CITATIONS
1	Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence. Frontiers in Aging Neuroscience, 2022, 14, 814528.	3.4	20
2	Development in the Mammalian Auditory System Depends on Transcription Factors. International Journal of Molecular Sciences, 2021, 22, 4189.	4.1	39
3	Neurog1, Neurod1, and Atoh1 are essential for spiral ganglia, cochlear nuclei, and cochlear hair cell development. Faculty Reviews, 2021, 10, 47.	3.9	11
4	Developmental Changes in Peripherin-eGFP Expression in Spiral Ganglion Neurons. Frontiers in Cellular Neuroscience, 2021, 15, 678113.	3.7	18
5	Smoothened overexpression causes trochlear motoneurons to reroute and innervate ipsilateral eyes. Cell and Tissue Research, 2021, 384, 59-72.	2.9	10
6	Fzd3 Expression Within Inner Ear Afferent Neurons Is Necessary for Central Pathfinding. Frontiers in Neuroscience, 2021, 15, 779871.	2.8	4
7	Sustained Loss of Bdnf Affects Peripheral but Not Central Vestibular Targets. Frontiers in Neurology, 2021, 12, 768456.	2.4	12
8	Combined Atoh1 and Neurod1 Deletion Reveals Autonomous Growth of Auditory Nerve Fibers. Molecular Neurobiology, 2020, 57, 5307-5323.	4.0	19
9	Using Sox2 to alleviate the hallmarks of age-related hearing loss. Ageing Research Reviews, 2020, 59, 101042.	10.9	24
10	Evolution and Plasticity of Inner Ear Vestibular Neurosensory Development. , 2020, , 145-161.		1
11	Evolution and Development of Lateral Line and Electroreception: An Integrated Perception of Neurons, Hair Cells and Brainstem Nuclei. , 2020, , 95-115.		0
12	Topologically correct central projections of tetrapod inner ear afferents require Fzd3. Scientific Reports, 2019, 9, 10298.	3.3	13
13	Neuronal Migration Generates New Populations of Neurons That Develop Unique Connections, Physiological Properties and Pathologies. Frontiers in Cell and Developmental Biology, 2019, 7, 59.	3.7	10
14	Primary sensory map formations reflect unique needs and molecular cues specific to each sensory system. F1000Research, 2019, 8, 345.	1.6	29
15	Wilhelm His' lasting insights into hindbrain and cranial ganglia development and evolution. Developmental Biology, 2018, 444, S14-S24.	2.0	35
16	Understanding Molecular Evolution and Development of the Organ of Corti Can Provide Clues for Hearing Restoration. Integrative and Comparative Biology, 2018, 58, 351-365.	2.0	21
17	Auditory Nomenclature: Combining Name Recognition With Anatomical Description. Frontiers in Neuroanatomy, 2018, 12, 99.	1.7	5
18	Ear transplantations reveal conservation of inner ear afferent pathfinding cues. Scientific Reports, 2018, 8, 13819.	3.3	11

KAREN L ELLIOTT

#	Article	IF	CITATIONS
19	Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties. Developmental Neurobiology, 2018, 78, 1064-1080.	3.0	15
20	Evolutionary and Developmental Biology Provide Insights Into the Regeneration of Organ of Corti Hair Cells. Frontiers in Cellular Neuroscience, 2018, 12, 252.	3.7	28
21	Sonic hedgehog antagonists reduce size and alter patterning of the frog inner ear. Developmental Neurobiology, 2017, 77, 1385-1400.	3.0	11
22	A method for detailed movement pattern analysis of tadpole startle response. Journal of the Experimental Analysis of Behavior, 2017, 108, 113-124.	1.1	5
23	Evolution and Development of the Inner Ear Efferent System: Transforming a Motor Neuron Population to Connect to the Most Unusual Motor Protein via Ancient Nicotinic Receptors. Frontiers in Cellular Neuroscience, 2017, 11, 114.	3.7	35
24	Spiral Ganglion Neuron Projection Development to the Hindbrain in Mice Lacking Peripheral and/or Central Target Differentiation. Frontiers in Neural Circuits, 2017, 11, 25.	2.8	23
25	Gene, cell, and organ multiplication drives inner ear evolution. Developmental Biology, 2017, 431, 3-15.	2.0	55
26	Gaskell revisited: new insights into spinal autonomics necessitate a revised motor neuron nomenclature. Cell and Tissue Research, 2017, 370, 195-209.	2.9	29
27	Neuroanatomical Tracing Techniques in the Ear: History, State of the Art, and Future Developments. Methods in Molecular Biology, 2016, 1427, 243-262.	0.9	15
28	Ear manipulations reveal a critical period for survival and dendritic development at the single ell level in <scp>M</scp> authner neurons. Developmental Neurobiology, 2015, 75, 1339-1351.	3.0	23
29	The quest for restoring hearing: Understanding ear development more completely. BioEssays, 2015, 37, 1016-1027.	2.5	58
30	Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs. Scientific Reports, 2015, 5, 8338.	3.3	24
31	Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell and Tissue Research, 2015, 361, 7-24.	2.9	56
32	Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system. Cell and Tissue Research, 2015, 359, 295-313.	2.9	26
33	Combining Whole-Mount In Situ Hybridization with Neuronal Tracing and Immunohistochemistry. Neuromethods, 2015, , 339-352.	0.3	10
34	Evolution and development of the tetrapod auditory system: an organ of Corti entric perspective. Evolution & Development, 2013, 15, 63-79.	2.0	91
35	Transplantation of Xenopus laevis Tissues to Determine the Ability of Motor Neurons to Acquire a Novel Target. PLoS ONE, 2013, 8, e55541.	2.5	25
36	Threeâ€dimensional reconstructions from optical sections of thick mouse inner ears using confocal microscopy. Journal of Microscopy, 2012, 248, 292-298.	1.8	31

KAREN L ELLIOTT

#	Article	IF	CITATIONS
37	Evidence for a Phe-Gly-Leu-amide-like allatostatin in the beetle Tenebrio molitor. Peptides, 2010, 31, 402-407.	2.4	13
38	Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord. International Journal of Developmental Biology, 2010, 54, 1443-1451.	0.6	19
39	Identification of Phe-Gly-Leu-amide type allatostatin-7 in Reticulitermes flavipes: Its localization in tissues and relation to juvenile hormone synthesis. Peptides, 2009, 30, 495-506.	2.4	14
40	Isolation of the gene for the precursor of Phe-Gly-Leu-amide allatostatins in the termite Reticulitermes flavipes. Peptides, 2009, 30, 855-860.	2.4	8
41	Changes in juvenile hormone synthesis in the termite Reticulitermes flavipes during development of soldiers and neotenic reproductives from groups of isolated workers. Journal of Insect Physiology, 2008, 54, 492-500.	2.0	44
42	Isolation of cockroach Phe–Gly–Leu–amide allatostatins from the termite Reticulitermes flavipes and their effect on juvenile hormone synthesis. Journal of Insect Physiology, 2008, 54, 939-948.	2.0	12
43	Juvenile hormone synthesis as related to egg development in neotenic reproductives of the termite Reticulitermes flavipes, with observations on urates in the fat body. General and Comparative Endocrinology, 2007, 152, 102-110.	1.8	41
44	A stage-specific ovarian factor with stable stimulation of juvenile hormone synthesis in corpora allata of the cockroach Diploptera punctata. Journal of Insect Physiology, 2006, 52, 929-935.	2.0	15