
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3219698/publications.pdf Version: 2024-02-01

ΔΕΤΔΛ ΚΙΟΟ

#	Article	IF	CITATIONS
1	Editorial: Searching for Solutions to Soil Pollution: Underlying Soil-Contaminant Interactions and Development of Innovative Land Remediation and Reclamation Techniques. Frontiers in Environmental Science, 2022, 9, .	3.3	2
2	The potential of Blepharidium guatemalense for nickel agromining in Mexico and Central America. International Journal of Phytoremediation, 2021, 23, 1157-1168.	3.1	5
3	Phytomanagement of Metal(loid)-Contaminated Soils: Options, Efficiency and Value. Frontiers in Environmental Science, 2021, 9, .	3.3	17
4	Beneficial traits of root endophytes and rhizobacteria associated with plants growing in phytomanaged soils with mixed trace metal-polycyclic aromatic hydrocarbon contamination. Chemosphere, 2021, 277, 130272.	8.2	20
5	Diversity and Role of Endophytic and Rhizosphere Microbes Associated with Hyperaccumulator Plants During Metal Accumulation. Mineral Resource Reviews, 2021, , 239-279.	1.5	7
6	Effect of plant root exudates on the desorption of hexachlorocyclohexane isomers from contaminated soils. Chemosphere, 2020, 241, 124920.	8.2	25
7	Keep and promote biodiversity at polluted sites under phytomanagement. Environmental Science and Pollution Research, 2020, 27, 44820-44834.	5.3	25
8	The Influence of Bottom Sediments and Inoculation with Rhizobacterial Inoculants on the Physiological State of Plants Used in Urban Plantings. Water (Switzerland), 2019, 11, 1792.	2.7	6
9	Soil amendments affecting nickel uptake and growth performance of tropical â€~metal crops' used for agromining. Journal of Geochemical Exploration, 2019, 203, 78-86.	3.2	22
10	Effects of reclamation effort on the recovery of ecosystem functions of a tropical degraded serpentinite dump site. Journal of Geochemical Exploration, 2019, 200, 139-151.	3.2	10
11	Can organic amendments replace chemical fertilizers in nickel agromining cropping systems in Albania?. International Journal of Phytoremediation, 2019, 21, 43-51.	3.1	15
12	The Application of Different Biological Remediation Strategies to PCDDs/PCDFs Contaminated Urban Sediments. Water (Switzerland), 2019, 11, 1962.	2.7	4
13	Assessing the agromining potential of Mediterranean nickel-hyperaccumulating plant species at field-scale in ultramafic soils under humid-temperate climate. Science of the Total Environment, 2018, 630, 275-286.	8.0	38
14	Strategies for Soil Protection and Remediation. , 2018, , 251-281.		5
15	Plant species-specificity and effects of bioinoculants and fertilization on plant performance for nickel phytomining. Plant and Soil, 2018, 425, 265-285.	3.7	30
16	Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash. Waste Management, 2018, 73, 351-359.	7.4	12
17	The Role of the Rhizosphere and Microbes Associated with Hyperaccumulator Plants in Metal Accumulation. Mineral Resource Reviews, 2018, , 157-188.	1.5	18
18	Soil microbial and Ni-agronomic responses to Alyssum murale interplanted with a legume. Applied Soil Ecology, 2018, 132, 60-73.	4.3	8

#	Article	IF	CITATIONS
19	Influence of new agromining cropping systems on soil bacterial diversity and the physico-chemical characteristics of an ultramafic soil. Science of the Total Environment, 2018, 645, 380-392.	8.0	22
20	Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation. Science of the Total Environment, 2017, 581-582, 676-688.	8.0	46
21	Assessing phytotoxicity of trace element-contaminated soils phytomanaged with gentle remediation options at ten European field trials. Science of the Total Environment, 2017, 599-600, 1388-1398.	8.0	45
22	Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation. International Journal of Phytoremediation, 2017, 19, 955-963.	3.1	29
23	Nickel drives bacterial community diversity in the rhizosphere of the hyperaccumulator Alyssum murale. Soil Biology and Biochemistry, 2017, 114, 121-130.	8.8	55
24	Potential Role of Plant-Associated Bacteria in Plant Metal Uptake and Implications in Phytotechnologies. Advances in Botanical Research, 2017, , 87-126.	1.1	36
25	Microbial community structure and activity in trace element-contaminated soils phytomanaged by Gentle Remediation Options (GRO). Environmental Pollution, 2017, 231, 237-251.	7.5	42
26	Using AFLP genome scanning to explore serpentine adaptation and nickel hyperaccumulation in Alyssum serpyllifolium. Plant and Soil, 2017, 416, 391-408.	3.7	6
27	Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. Journal of Environmental Management, 2017, 186, 301-313.	7.8	86
28	Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects. Nature Communications, 2017, 8, 1966.	12.8	116
29	Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant and Soil, 2016, 406, 55-69.	3.7	116
30	Enhanced Degradation of Diesel in the Rhizosphere of <i>Lupinus luteus</i> after Inoculation with Diesel-Degrading and Plant Growth-Promoting Bacterial Strains. Journal of Environmental Quality, 2016, 45, 924-932.	2.0	39
31	Leachability of volatile fuel compounds from contaminated soils and the effect of plant exudates: A comparison of column and batch leaching tests. Journal of Hazardous Materials, 2016, 304, 481-489.	12.4	10
32	Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants. Science of the Total Environment, 2016, 548-549, 370-379.	8.0	60
33	Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils. Journal of Environmental Management, 2016, 171, 101-112.	7.8	96
34	Inoculation methods using <i>Rhodococcus erythropolis</i> strain P30 affects bacterial assisted phytoextraction capacity of <i>Nicotiana tabacum</i> . International Journal of Phytoremediation, 2016, 18, 406-415.	3.1	19
35	Rhizobacterial communities associated with the flora of three serpentine outcrops of the Iberian Peninsula. Plant and Soil, 2016, 403, 233-252.	3.7	22
36	The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Australian Journal of Botany, 2015, 63, 72.	0.6	72

#	Article	IF	CITATIONS
37	Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. Environmental Science and Pollution Research, 2015, 22, 5370-5382.	5.3	47
38	Agronomic Practices for Improving Gentle Remediation of Trace Element-Contaminated Soils. International Journal of Phytoremediation, 2015, 17, 1005-1037.	3.1	197
39	Improving the Agronomy of <i>Alyssum murale</i> for Extensive Phytomining: A Five-Year Field Study. International Journal of Phytoremediation, 2015, 17, 117-127.	3.1	162
40	Agromining: Farming for Metals in the Future?. Environmental Science & Technology, 2015, 49, 4773-4780.	10.0	243
41	Draft Genome Sequences of 10 <i>Microbacterium</i> spp., with Emphasis on Heavy Metal-Contaminated Environments. Genome Announcements, 2015, 3, .	0.8	19
42	Phytoextraction of nickel and rhizosphere microbial communities under mono- or multispecies hyperaccumulator plant cover in a serpentine soil. Australian Journal of Botany, 2015, 63, 92.	0.6	21
43	Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO). Science of the Total Environment, 2014, 496, 510-522.	8.0	49
44	Heavy metal distribution in mine-soils and plants growing in a Pb/Zn-mining area in NW Spain. Applied Geochemistry, 2014, 44, 3-11.	3.0	94
45	Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator Alyssum pintodasilvae. Plant and Soil, 2014, 379, 35-50.	3.7	80
46	Influence of Plant Root Exudates on the Mobility of Fuel Volatile Compounds in Contaminated Soils. International Journal of Phytoremediation, 2014, 16, 824-839.	3.1	20
47	Exogenous treatments with phytohormones can improve growth and nickel yield of hyperaccumulating plants. Science of the Total Environment, 2014, 494-495, 1-8.	8.0	28
48	Xylem exudate composition and root-to-shoot nickel translocation in Alyssum species. Plant and Soil, 2013, 373, 59-75.	3.7	38
49	Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Environmental Pollution, 2013, 178, 202-210.	7.5	84
50	The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biology and Biochemistry, 2013, 60, 182-194.	8.8	566
51	Bacterially Induced Weathering of Ultramafic Rock and Its Implications for Phytoextraction. Applied and Environmental Microbiology, 2013, 79, 5094-5103.	3.1	44
52	Pseudometallophytes colonising Pb/Zn mine tailings: A description of the plant–microorganism–rhizosphere soil system and isolation of metal-tolerant bacteria. Journal of Hazardous Materials, 2012, 217-218, 350-359.	12.4	111
53	Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterisation. Plant and Soil, 2011, 340, 413-433.	3.7	69
54	Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environmental and Experimental Botany, 2009, 67, 243-259.	4.2	340

#	Article	IF	CITATIONS
55	Contaminants and nutrients. Environmental Science and Pollution Research, 2009, 16, 361-362.	5.3	0
56	Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere, 2007, 66, 1458-1467.	8.2	233
57	In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant and Soil, 2007, 293, 79-89.	3.7	142
58	A phytogeochemical study of the TrÃis-os-Montes region (NE Portugal): Possible species for plant-based soil remediation technologies. Science of the Total Environment, 2006, 354, 265-277.	8.0	79
59	Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain. Science of the Total Environment, 2005, 336, 1-11.	8.0	34
60	Tolerance and bioaccumulation of heavy metals in five populations of Cistus ladanifer L. subsp. ladanifer. Plant and Soil, 2004, 258, 189-205.	3.7	44
61	Structure and floristics of an old secondary rain forest in Central Kalimantan, Indonesia, and a comparison with adjacent primary forest. Forest Ecology and Management, 2004, 195, 385-397.	3.2	112
62	Phytoextraction of cadmium with Thlaspi caerulescens. Plant and Soil, 2003, 249, 27-35.	3.7	160
63	Why plants grow poorly on very acid soils: are ecologists missing the obvious?. Journal of Experimental Botany, 2001, 52, 791-799.	4.8	142
64	The role of root exudates in aluminium resistance and siliconâ€induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). Journal of Experimental Botany, 2001, 52, 1339-1352.	4.8	11