
## Mauricio E Calvo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3219692/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Optoelectronic Devices Based on Scaffold Stabilized Blackâ€Phase CsPbI <sub>3</sub> Nanocrystals.<br>Advanced Optical Materials, 2022, 10, .                                                  | 3.6 | 6         |
| 2  | Enhanced up-conversion photoluminescence in fluoride–oxyfluoride nanophosphor films by embedding gold nanoparticles. Materials Advances, 2022, 3, 4235-4242.                                  | 2.6 | 8         |
| 3  | Effect of Spatial Inhomogeneity on Quantum Trapping. Journal of Physical Chemistry Letters, 2022, 13, 4513-4519.                                                                              | 2.1 | 5         |
| 4  | Enhanced Directional Light Extraction from Patterned Rareâ€Earth Phosphor Films. Advanced Optical<br>Materials, 2021, 9, 2001611.                                                             | 3.6 | 17        |
| 5  | The Complex Interplay of Lead Halide Perovskites with Their Surroundings. Advanced Optical<br>Materials, 2021, 9, 2100133.                                                                    | 3.6 | 7         |
| 6  | The Role of the Atmosphere on the Photophysics of Ligandâ€Free Leadâ€Halide Perovskite Nanocrystals.<br>Advanced Optical Materials, 2021, 9, 2100605.                                         | 3.6 | 5         |
| 7  | Highly Versatile Upconverting Oxyfluoride-Based Nanophosphor Films. ACS Applied Materials &<br>Interfaces, 2021, 13, 30051-30060.                                                             | 4.0 | 10        |
| 8  | Ligandâ€Free MAPbI <sub>3</sub> Quantum Dot Solar Cells Based on Nanostructured Insulating<br>Matrices. Solar Rrl, 2021, 5, 2100204.                                                          | 3.1 | 16        |
| 9  | Persistent luminescent nanoparticles: Challenges and opportunities for a shimmering future. Journal of Applied Physics, 2021, 130, .                                                          | 1.1 | 20        |
| 10 | Disentangling Electron–Phonon Coupling and Thermal Expansion Effects in the Band Gap<br>Renormalization of Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2021, 12, 569-575. | 2.1 | 29        |
| 11 | Localized surface plasmon effects on the photophysics of perovskite thin films embedding metal nanoparticles. Journal of Materials Chemistry C, 2020, 8, 916-921.                             | 2.7 | 28        |
| 12 | Finite Size Effects on Light Propagation throughout Random Media: Relation between Optical<br>Properties and Scattering Event Statistics. Advanced Optical Materials, 2020, 8, 1901196.       | 3.6 | 4         |
| 13 | Internal quantum efficiency and time signals from intensity-modulated photocurrent spectra of perovskite solar cells. Journal of Applied Physics, 2020, 128, .                                | 1.1 | 25        |
| 14 | Efficient third harmonic generation from FAPbBr <sub>3</sub> perovskite nanocrystals. Journal of<br>Materials Chemistry C, 2020, 8, 15990-15995.                                              | 2.7 | 20        |
| 15 | Local Rearrangement of the Iodide Defect Structure Determines the Phase Segregation Effect in Mixed-Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 4911-4916.           | 2.1 | 20        |
| 16 | Monitoring, Modeling, and Optimization of Lead Halide Perovskite Nanocrystal Growth within Porous<br>Matrices. Journal of Physical Chemistry C, 2020, 124, 8041-8046.                         | 1.5 | 2         |
| 17 | Mesoporous Matrices as Hosts for Metal Halide Perovskite Nanocrystals. Advanced Optical Materials,<br>2020, 8, 1901868.                                                                       | 3.6 | 30        |
| 18 | Optical Responses of Localized and Extended Modes in a Mesoporous Layer on Plasmonic Array to<br>Isopropanol Vapor. Journal of Physical Chemistry C, 2020, 124, 5772-5779.                    | 1.5 | 3         |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Casimir–Lifshitz Force Based Optical Resonators. Journal of Physical Chemistry Letters, 2019, 10,<br>5856-5860.                                                                                                                              | 2.1  | 14        |
| 20 | Spatially Resolved Analysis of Defect Annihilation and Recovery Dynamics in Metal Halide Perovskite<br>Single Crystals. ACS Applied Energy Materials, 2019, 2, 6967-6972.                                                                    | 2.5  | 15        |
| 21 | Flexible nanophosphor films doped with Mie resonators for enhanced out-coupling of the emission.<br>Journal of Materials Chemistry C, 2019, 7, 267-274.                                                                                      | 2.7  | 14        |
| 22 | Nanoparticle Bragg reflectors: A smart analytical tool for biosensing. Biosensors and Bioelectronics:<br>X, 2019, 1, 100012.                                                                                                                 | 0.9  | 6         |
| 23 | Tamm Plasmons Directionally Enhance Rare-Earth Nanophosphor Emission. ACS Photonics, 2019, 6, 634-641.                                                                                                                                       | 3.2  | 17        |
| 24 | Highly Efficient Transparent Nanophosphor Films for Tunable White-Light-Emitting Layered Coatings.<br>ACS Applied Materials & Interfaces, 2019, 11, 4219-4225.                                                                               | 4.0  | 16        |
| 25 | Mechanism of Photoluminescence Intermittency in Organic–Inorganic Perovskite Nanocrystals. ACS<br>Applied Materials & Interfaces, 2019, 11, 6344-6349.                                                                                       | 4.0  | 17        |
| 26 | Nanophotonics Tunes Rare-Earth Nanophosphor Emission. , 2019, , .                                                                                                                                                                            |      | 0         |
| 27 | Transparent nanophosphor films for efficient white-light generation. , 2019, , .                                                                                                                                                             |      | 0         |
| 28 | Photonic structuring improves the colour purity of rare-earth nanophosphors. Materials Horizons, 2018, 5, 661-667.                                                                                                                           | 6.4  | 15        |
| 29 | Absorption and Emission of Light in Optoelectronic Nanomaterials: The Role of the Local Optical Environment. Journal of Physical Chemistry Letters, 2018, 9, 2077-2084.                                                                      | 2.1  | 17        |
| 30 | Flexible and Adaptable Lightâ€Emitting Coatings for Arbitrary Metal Surfaces based on Optical Tamm<br>Mode Coupling. Advanced Optical Materials, 2018, 6, 1700560.                                                                           | 3.6  | 19        |
| 31 | Improving the Bulk Emission Properties of CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub> by<br>Modifying the Halide-Related Defect Structure. Journal of Physical Chemistry C, 2018, 122, 27250-27255.                                    | 1.5  | 4         |
| 32 | High voltage vacuum-deposited<br>CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> –CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub><br>tandem solar cells. Energy and Environmental Science, 2018, 11, 3292-3297.                            | 15.6 | 98        |
| 33 | Highly Efficient and Environmentally Stable Flexible Color Converters Based on Confined<br>CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub> Nanocrystals. ACS Applied Materials &<br>Interfaces, 2018, 10, 38334-38340.                     | 4.0  | 20        |
| 34 | Absorption enhancement in methylammonium lead iodide perovskite solar cells with embedded arrays<br>of dielectric particles. Optics Express, 2018, 26, A865.                                                                                 | 1.7  | 19        |
| 35 | Origin of Light-Induced Photophysical Effects in Organic Metal Halide Perovskites in the Presence of<br>Oxygen. Journal of Physical Chemistry Letters, 2018, 9, 3891-3896.                                                                   | 2.1  | 109       |
| 36 | Strong Quantum Confinement and Fast Photoemission Activation in<br>CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> Perovskite Nanocrystals Grown within Periodically<br>Mesostructured Films. Advanced Optical Materials, 2017, 5, 1601087. | 3.6  | 65        |

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Photonic Tuning of the Emission Color of Nanophosphor Films Processed at High Temperature.<br>Advanced Optical Materials, 2017, 5, 1700099.                                                                                                                     | 3.6  | 21        |
| 38 | Design and Realization of a Novel Optically Disordered Material: A Demonstration of a Mie Glass.<br>Advanced Optical Materials, 2017, 5, 1700025.                                                                                                               | 3.6  | 8         |
| 39 | Aperiodic Metalâ€Dielectric Multilayers as Highly Efficient Sunlight Reflectors. Advanced Optical<br>Materials, 2017, 5, 1600833.                                                                                                                               | 3.6  | 10        |
| 40 | Electron injection and scaffold effects in perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 634-644.                                                                                                                                          | 2.7  | 58        |
| 41 | Facile Synthesis of Hybrid Organic–Inorganic Perovskite Microcubes of Optical Quality Using Polar<br>Antisolvents. ACS Applied Materials & Interfaces, 2017, 9, 35505-35510.                                                                                    | 4.0  | 4         |
| 42 | Fluorescent Humidity Sensors Based on Photonic Resonators. Advanced Optical Materials, 2017, 5, 1700663.                                                                                                                                                        | 3.6  | 28        |
| 43 | ABX3 Perovskites for Tandem Solar Cells. Joule, 2017, 1, 769-793.                                                                                                                                                                                               | 11.7 | 176       |
| 44 | Materials chemistry approaches to the control of the optical features of perovskite solar cells.<br>Journal of Materials Chemistry A, 2017, 5, 20561-20578.                                                                                                     | 5.2  | 35        |
| 45 | Photonic Tuning of Nanophosphor Transparent thin films. , 2017, , .                                                                                                                                                                                             |      | Ο         |
| 46 | Optical design of all-perovskite tandem solar cells. , 2017, , .                                                                                                                                                                                                |      | 1         |
| 47 | Unbroken Perovskite: Interplay of Morphology, Electroâ€optical Properties, and Ionic Movement.<br>Advanced Materials, 2016, 28, 5031-5037.                                                                                                                      | 11.1 | 242       |
| 48 | Optical analysis of CH <sub>3</sub> NH <sub>3</sub> Sn <sub>x</sub> Pb <sub>1â^'x</sub> I <sub>3</sub><br>absorbers: a roadmap for perovskite-on-perovskite tandem solar cells. Journal of Materials Chemistry<br>A, 2016, 4, 11214-11221.                      | 5.2  | 101       |
| 49 | Three-Dimensional Optical Tomography and Correlated Elemental Analysis of Hybrid Perovskite<br>Microstructures: An Insight into Defect-Related Lattice Distortion and Photoinduced Ion Migration.<br>Journal of Physical Chemistry Letters, 2016, 7, 5227-5234. | 2.1  | 37        |
| 50 | A panchromatic modification of the light absorption spectra of metal–organic frameworks. Chemical<br>Communications, 2016, 52, 6665-6668.                                                                                                                       | 2.2  | 44        |
| 51 | Maximized performance of dye solar cells on plastic: a combined theoretical and experimental optimization approach. Energy and Environmental Science, 2016, 9, 2061-2071.                                                                                       | 15.6 | 19        |
| 52 | Solution processed high refractive index contrast distributed Bragg reflectors. Journal of Materials<br>Chemistry C, 2016, 4, 4532-4537.                                                                                                                        | 2.7  | 33        |
| 53 | Integration of Photonic Crystals into Flexible Dye Solar Cells: A Route toward Bendable and<br>Adaptable Optoelectronic Devices Displaying Structural Color and Enhanced Efficiency. Advanced<br>Optical Materials, 2016, 4, 464-471.                           | 3.6  | 29        |
| 54 | Full solution process approach for deterministic control of light emission at the nanoscale<br>(Conference Presentation). , 2016, , .                                                                                                                           |      | 0         |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Photophysical Analysis of the Formation of Organic–Inorganic Trihalide Perovskite Films:<br>Identification and Characterization of Crystal Nucleation and Growth. Journal of Physical Chemistry<br>C, 2016, 120, 3071-3076. | 1.5 | 23        |
| 56 | Efficient bifacial dye-sensitized solar cells through disorder by design. Journal of Materials<br>Chemistry A, 2016, 4, 1953-1961.                                                                                          | 5.2 | 33        |
| 57 | Color Tuning of GdVO4:Dy3+ Nanophosphor via photonic multilayers. , 2016, , .                                                                                                                                               |     | 0         |
| 58 | Skin Protection: Biocompatible Films with Tailored Spectral Response for Prevention of DNA Damage in Skin Cells (Adv. Healthcare Mater. 13/2015). Advanced Healthcare Materials, 2015, 4, 2048-2048.                        | 3.9 | 0         |
| 59 | Adaptable Ultraviolet Reflecting Polymeric Multilayer Coatings of High Refractive Index Contrast.<br>Advanced Optical Materials, 2015, 3, 1633-1639.                                                                        | 3.6 | 16        |
| 60 | Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites. Journal of<br>Physical Chemistry Letters, 2015, 6, 2200-2205.                                                                            | 2.1 | 205       |
| 61 | Fine Tuning the Emission Properties of Nanoemitters in Multilayered Structures by Deterministic Control of their Local Photonic Environment. Small, 2015, 11, 2727-2732.                                                    | 5.2 | 17        |
| 62 | Biocompatible Films with Tailored Spectral Response for Prevention of DNA Damage in Skin Cells.<br>Advanced Healthcare Materials, 2015, 4, 1944-1948.                                                                       | 3.9 | 13        |
| 63 | Highly Efficient Perovskite Solar Cells with Tunable Structural Color. Nano Letters, 2015, 15, 1698-1702.                                                                                                                   | 4.5 | 289       |
| 64 | Flexible Distributed Bragg Reflectors from Nanocolumnar Templates. Advanced Optical Materials, 2015, 3, 171-175.                                                                                                            | 3.6 | 16        |
| 65 | Absorption Enhancement in Organic–Inorganic Halide Perovskite Films with Embedded Plasmonic Gold<br>Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 18635-18640.                                                 | 1.5 | 105       |
| 66 | Nanolevitation Phenomena in Real Plane-Parallel Systems Due to the Balance between Casimir and<br>Gravity Forces. Journal of Physical Chemistry C, 2015, 119, 5663-5670.                                                    | 1.5 | 21        |
| 67 | Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals. Progress in Photovoltaics: Research and Applications, 2015, 23, 1785-1792.       | 4.4 | 15        |
| 68 | Synergistic strategies for the preparation of highly efficient dye-sensitized solar cells on plastic substrates: combination of chemical and physical sintering. RSC Advances, 2015, 5, 76795-76803.                        | 1.7 | 7         |
| 69 | Full solution processed mesostructured optical resonators integrating colloidal semiconductor quantum dots. Nanoscale, 2015, 7, 16583-16589.                                                                                | 2.8 | 9         |
| 70 | Optical Description of Mesostructured Organic–Inorganic Halide Perovskite Solar Cells. Journal of<br>Physical Chemistry Letters, 2015, 6, 48-53.                                                                            | 2.1 | 59        |
| 71 | Panchromatic porous specular back reflectors for efficient transparent dye solar cells. Physical<br>Chemistry Chemical Physics, 2014, 16, 663-668.                                                                          | 1.3 | 17        |
| 72 | Nanometer cale Precision Tuning of 3D Photonic Crystals Made Possible Using Polyelectrolytes with<br>Controlled Short Chain Length and Narrow Polydispersity. Advanced Materials Interfaces, 2014, 1,<br>1300051.           | 1.9 | 3         |

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Fully stable numerical calculations for finite one-dimensional structures: Mapping the transfer matrix method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 134, 9-20.                | 1.1  | 20        |
| 74 | Multidirectional Lightâ€Harvesting Enhancement in Dye Solar Cells by Surface Patterning. Advanced<br>Optical Materials, 2014, 2, 879-884.                                                                   | 3.6  | 14        |
| 75 | Microwave-Assisted Synthesis of Biocompatible Europium-Doped Calcium Hydroxyapatite and<br>Fluoroapatite Luminescent Nanospindles Functionalized with Poly(acrylic acid). Langmuir, 2013, 29,<br>1985-1994. | 1.6  | 94        |
| 76 | Angular response of photonic crystal based dye sensitized solar cells. Energy and Environmental Science, 2013, 6, 1260.                                                                                     | 15.6 | 40        |
| 77 | Resonant Photocurrent Generation in Dye-Sensitized Periodically Nanostructured Photoconductors<br>by Optical Field Confinement Effects. Journal of the American Chemical Society, 2013, 135, 7803-7806.     | 6.6  | 18        |
| 78 | Selective UV Reflecting Mirrors Based on Nanoparticle Multilayers. Advanced Functional Materials, 2013, 23, 2805-2811.                                                                                      | 7.8  | 76        |
| 79 | CHAPTER 1. Responsive Bragg Reflectors. RSC Smart Materials, 2013, , 1-20.                                                                                                                                  | 0.1  | 1         |
| 80 | Enhanced diffusion through porous nanoparticle optical multilayers. Journal of Materials Chemistry, 2012, 22, 1751-1757.                                                                                    | 6.7  | 22        |
| 81 | Collective osmotic shock in ordered materials. Nature Materials, 2012, 11, 53-57.                                                                                                                           | 13.3 | 56        |
| 82 | Characterization of Mesoporous Thin Films by Specular Reflectance Porosimetry. Langmuir, 2012, 28,<br>13777-13782.                                                                                          | 1.6  | 14        |
| 83 | Introducing structural colour in DSCs by using photonic crystals: interplay between conversion efficiency and optical properties. Energy and Environmental Science, 2012, 5, 8238.                          | 15.6 | 50        |
| 84 | Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. Journal of<br>Polymer Science, Part B: Polymer Physics, 2012, 50, 945-956.                                        | 2.4  | 111       |
| 85 | Integration of Gold Nanoparticles in Optical Resonators. Langmuir, 2012, 28, 9161-9167.                                                                                                                     | 1.6  | 14        |
| 86 | Efficient Transparent Thin Dye Solar Cells Based on Highly Porous 1D Photonic Crystals. Advanced<br>Functional Materials, 2012, 22, 1303-1310.                                                              | 7.8  | 74        |
| 87 | Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells. Electrochimica Acta, 2012, 75, 139-147.        | 2.6  | 62        |
| 88 | Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications. Energy and Environmental Science, 2011, 4, 4800.                                       | 15.6 | 114       |
| 89 | Porous Supramolecularly Templated Optical Resonators Built in 1D Photonic Crystals. Advanced Functional Materials, 2011, 21, 2534-2540.                                                                     | 7.8  | 32        |
| 90 | Interplay of Resonant Cavity Modes with Localized Surface Plasmons: Optical Absorption Properties of Bragg Stacks Integrating Gold Nanoparticles. Advanced Materials, 2011, 23, 2108-2112.                  | 11.1 | 34        |

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Angular emission properties of a layer of rare-earth based nanophosphors embedded in one-dimensional photonic crystal coatings. Applied Physics Letters, 2011, 99, 051111.                            | 1.5  | 3         |
| 92  | Flexible and transferable one-dimensional photonic crystals based on polymer infiltrated nanoparticle multilayers. Proceedings of SPIE, 2010, , .                                                     | 0.8  | 0         |
| 93  | Mesostructured thin films as photonic crystal building blocks for sensing applications. Proceedings of SPIE, 2010, , .                                                                                | 0.8  | 0         |
| 94  | Gallium Arsenide Infiltration of Nanoporous Multilayers: A Route to Highâ€Dielectric ontrast<br>Oneâ€Dimensional Photonic Crystals. Small, 2010, 6, 1283-1287.                                        | 5.2  | 6         |
| 95  | All-nanoparticle-based optical resonators for detection of gases and liquids. , 2010, , .                                                                                                             |      | 0         |
| 96  | Theoretical Analysis of the Performance of One-Dimensional Photonic Crystal-Based Dye-Sensitized<br>Solar Cells. Journal of Physical Chemistry C, 2010, 114, 3681-3687.                               | 1.5  | 73        |
| 97  | Flexible, Adhesive, and Biocompatible Bragg Mirrors Based on Polydimethylsiloxane Infiltrated<br>Nanoparticle Multilayers. Chemistry of Materials, 2010, 22, 3909-3915.                               | 3.2  | 47        |
| 98  | TiO2–SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition. Journal of Materials Chemistry, 2010, 20, 6408.                                      | 6.7  | 64        |
| 99  | Porous One-Dimensional Photonic Crystal Coatings for Gas Detection. IEEE Sensors Journal, 2010, 10, 1206-1212.                                                                                        | 2.4  | 21        |
| 100 | Versatility and multifunctionality of highly reflecting Bragg mirrors based on nanoparticle multilayers. Journal of Materials Chemistry, 2010, 20, 8240.                                              | 6.7  | 36        |
| 101 | Environmentally responsive nanoparticle-based luminescent optical resonators. Nanoscale, 2010, 2, 936.                                                                                                | 2.8  | 24        |
| 102 | Porous Oneâ€Dimensional Photonic Crystals Improve the Powerâ€Conversion Efficiency of Dyeâ€Sensitized<br>Solar Cells. Advanced Materials, 2009, 21, 764-770.                                          | 11.1 | 249       |
| 103 | Mesostructured Thin Films as Responsive Optical Coatings of Photonic Crystals. Small, 2009, 5, 2309-2315.                                                                                             | 5.2  | 36        |
| 104 | Experimental Demonstration of the Mechanism of Light Harvesting Enhancement in<br>Photonic-Crystal-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 1150-1154.           | 1.5  | 65        |
| 105 | Control over the Structural and Optical Features of Nanoparticle-Based One-Dimensional Photonic<br>Crystals. Langmuir, 2009, 25, 2443-2448.                                                           | 1.6  | 35        |
| 106 | Molding with nanoparticle-based one-dimensional photonic crystals: a route to flexible and<br>transferable Bragg mirrors of high dielectric contrast. Journal of Materials Chemistry, 2009, 19, 3144. | 6.7  | 61        |
| 107 | Nanoparticle Based Multilayers as Multifunctional Optical Coatings. Materials Research Society<br>Symposia Proceedings, 2009, 1188, 15.                                                               | 0.1  | 0         |
| 108 | Photoconducting Bragg Mirrors based on TiO <sub>2</sub> Nanoparticle Multilayers. Advanced<br>Functional Materials, 2008, 18, 2708-2715.                                                              | 7.8  | 81        |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Nanoparticle-Based One-Dimensional Photonic Crystals. Langmuir, 2008, 24, 4430-4434.                                                                                                                                          | 1.6 | 190       |
| 110 | Sorption Properties of Mesoporous Multilayer Thin Films. Journal of Physical Chemistry C, 2008, 112, 3157-3163.                                                                                                               | 1.5 | 110       |
| 111 | Spectral Response of Opal-Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 13-17.                                                                                                                | 1.5 | 137       |
| 112 | Integration of photonic crystals in dye sensitized solar cells. , 2008, , .                                                                                                                                                   |     | 0         |
| 113 | Mesoporous Hybrid Thin Films: Building Blocks for Complex Materials with Spatial Organization.<br>Materials Research Society Symposia Proceedings, 2007, 1007, 1.                                                             | 0.1 | 1         |
| 114 | Enhanced power conversion efficiency in solar cells coupled to photonic crystals. Proceedings of SPIE, 2007, , .                                                                                                              | 0.8 | 1         |
| 115 | Mesoporous Anatase TiO2Films:  Use of Ti K XANES for the Quantification of the Nanocrystalline<br>Character and Substrate Effects in the Photocatalysis Behavior. Journal of Physical Chemistry C, 2007,<br>111, 10886-10893. | 1.5 | 130       |
| 116 | Hybrid non-silica mesoporous thin films. New Journal of Chemistry, 2005, 29, 59-63.                                                                                                                                           | 1.4 | 42        |
| 117 | Enhancement of salicylate photodegradation under bias in binary mixtures. Catalysis Today, 2002, 76, 133-139.                                                                                                                 | 2.2 | 9         |
| 118 | Photooxidation of Organic Mixtures on Biased TiO2Films. Environmental Science & Technology, 2001, 35, 4132-4138.                                                                                                              | 4.6 | 60        |