Mauricio E Calvo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3219692/mauricio-e-calvo-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 3,926 105 34 h-index g-index citations papers 118 4,341 5.7 9.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
105	Effect of Spatial Inhomogeneity on Quantum Trapping Journal of Physical Chemistry Letters, 2022 , 451	I 3 <u>64</u> .Б1	9 ₁
104	Disentangling Electron-Phonon Coupling and Thermal Expansion Effects in the Band Gap Renormalization of Perovskite Nanocrystals. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 569-575	6.4	10
103	The Complex Interplay of Lead Halide Perovskites with Their Surroundings. <i>Advanced Optical Materials</i> , 2021 , 9, 2100133	8.1	4
102	The Role of the Atmosphere on the Photophysics of Ligand-Free Lead-Halide Perovskite Nanocrystals. <i>Advanced Optical Materials</i> , 2021 , 9, 2100605	8.1	2
101	Highly Versatile Upconverting Oxyfluoride-Based Nanophosphor Films. <i>ACS Applied Materials</i> & amp; Interfaces, 2021 , 13, 30051-30060	9.5	1
100	Enhanced Directional Light Extraction from Patterned Rare-Earth Phosphor Films. <i>Advanced Optical Materials</i> , 2021 , 9, 2001611	8.1	7
99	Ligand-Free MAPbI3 Quantum Dot Solar Cells Based on Nanostructured Insulating Matrices. <i>Solar Rrl</i> , 2021 , 5, 2100204	7.1	6
98	Persistent luminescent nanoparticles: Challenges and opportunities for a shimmering future. <i>Journal of Applied Physics</i> , 2021 , 130, 080902	2.5	4
97	Local Rearrangement of the Iodide Defect Structure Determines the Phase Segregation Effect in Mixed-Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 4911-4916	6.4	10
96	Monitoring, Modeling, and Optimization of Lead Halide Perovskite Nanocrystal Growth within Porous Matrices. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 8041-8046	3.8	1
95	Mesoporous Matrices as Hosts for Metal Halide Perovskite Nanocrystals. <i>Advanced Optical Materials</i> , 2020 , 8, 1901868	8.1	14
94	Optical Responses of Localized and Extended Modes in a Mesoporous Layer on Plasmonic Array to Isopropanol Vapor. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 5772-5779	3.8	2
93	Localized surface plasmon effects on the photophysics of perovskite thin films embedding metal nanoparticles. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 916-921	7.1	17
92	Finite Size Effects on Light Propagation throughout Random Media: Relation between Optical Properties and Scattering Event Statistics. <i>Advanced Optical Materials</i> , 2020 , 8, 1901196	8.1	3
91	Internal quantum efficiency and time signals from intensity-modulated photocurrent spectra of perovskite solar cells. <i>Journal of Applied Physics</i> , 2020 , 128, 133103	2.5	8
90	Efficient third harmonic generation from FAPbBr3 perovskite nanocrystals. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15990-15995	7.1	9
89	Casimir-Lifshitz Force Based Optical Resonators. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 5856-5	8 6 04	6

(2017-2019)

88	Spatially Resolved Analysis of Defect Annihilation and Recovery Dynamics in Metal Halide Perovskite Single Crystals. <i>ACS Applied Energy Materials</i> , 2019 , 2, 6967-6972	6.1	10
87	Flexible nanophosphor films doped with Mie resonators for enhanced out-coupling of the emission. Journal of Materials Chemistry C, 2019 , 7, 267-274	7.1	9
86	Nanoparticle Bragg reflectors: A smart analytical tool for biosensing. <i>Biosensors and Bioelectronics: X</i> , 2019 , 1, 100012	2.9	4
85	Tamm Plasmons Directionally Enhance Rare-Earth Nanophosphor Emission. ACS Photonics, 2019, 6, 634-	-6431	10
84	Highly Efficient Transparent Nanophosphor Films for Tunable White-Light-Emitting Layered Coatings. <i>ACS Applied Materials & Date of the Action of the Action Science (Coating Coating </i>	9.5	7
83	Mechanism of Photoluminescence Intermittency in Organic-Inorganic Perovskite Nanocrystals. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 6344-6349	9.5	13
82	Photonic structuring improves the colour purity of rare-earth nanophosphors. <i>Materials Horizons</i> , 2018 , 5, 661-667	14.4	7
81	Absorption and Emission of Light in Optoelectronic Nanomaterials: The Role of the Local Optical Environment. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 2077-2084	6.4	11
80	Origin of Light-Induced Photophysical Effects in Organic Metal Halide Perovskites in the Presence of Oxygen. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 3891-3896	6.4	84
79	Flexible and Adaptable Light-Emitting Coatings for Arbitrary Metal Surfaces based on Optical Tamm Mode Coupling. <i>Advanced Optical Materials</i> , 2018 , 6, 1700560	8.1	13
78	Improving the Bulk Emission Properties of CH3NH3PbBr3 by Modifying the Halide-Related Defect Structure. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 27250-27255	3.8	3
77	High voltage vacuum-deposited CH3NH3PbI3©H3NH3PbI3 tandem solar cells. <i>Energy and Environmental Science</i> , 2018 , 11, 3292-3297	35.4	74
76	Highly Efficient and Environmentally Stable Flexible Color Converters Based on Confined CHNHPbBr Nanocrystals. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 38334-38340	9.5	10
75	Absorption enhancement in methylammonium lead iodide perovskite solar cells with embedded arrays of dielectric particles. <i>Optics Express</i> , 2018 , 26, A865-A878	3.3	15
74	Strong Quantum Confinement and Fast Photoemission Activation in CH3NH3PbI3 Perovskite Nanocrystals Grown within Periodically Mesostructured Films. <i>Advanced Optical Materials</i> , 2017 , 5, 1601	1087	52
73	Photonic Tuning of the Emission Color of Nanophosphor Films Processed at High Temperature. <i>Advanced Optical Materials</i> , 2017 , 5, 1700099	8.1	12
72	Design and Realization of a Novel Optically Disordered Material: A Demonstration of a Mie Glass. <i>Advanced Optical Materials</i> , 2017 , 5, 1700025	8.1	7
71	Aperiodic Metal-Dielectric Multilayers as Highly Efficient Sunlight Reflectors. <i>Advanced Optical Materials</i> , 2017 , 5, 1600833	8.1	8

70	Electron injection and scaffold effects in perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 634-644	7.1	52
69	Facile Synthesis of Hybrid Organic-Inorganic Perovskite Microcubes of Optical Quality Using Polar Antisolvents. <i>ACS Applied Materials & M</i>	9.5	3
68	Fluorescent Humidity Sensors Based on Photonic Resonators. Advanced Optical Materials, 2017, 5, 170	06663	23
67	ABX3 Perovskites for Tandem Solar Cells. <i>Joule</i> , 2017 , 1, 769-793	27.8	125
66	Materials chemistry approaches to the control of the optical features of perovskite solar cells. Journal of Materials Chemistry A, 2017 , 5, 20561-20578	13	27
65	Photophysical Analysis of the Formation of Organic-Inorganic Trihalide Perovskite Films: Identification and Characterization of Crystal Nucleation and Growth. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 3071-3076	3.8	21
64	Efficient bifacial dye-sensitized solar cells through disorder by design. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1953-1961	13	28
63	Unbroken Perovskite: Interplay of Morphology, Electro-optical Properties, and Ionic Movement. <i>Advanced Materials</i> , 2016 , 28, 5031-7	24	208
62	Optical analysis of CHNHSn Pb I absorbers: a roadmap for perovskite-on-perovskite tandem solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11214-11221	13	87
61	Three-Dimensional Optical Tomography and Correlated Elemental Analysis of Hybrid Perovskite Microstructures: An Insight into Defect-Related Lattice Distortion and Photoinduced Ion Migration. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 5227-5234	6.4	32
60	A panchromatic modification of the light absorption spectra of metal-organic frameworks. <i>Chemical Communications</i> , 2016 , 52, 6665-8	5.8	34
59	Maximized performance of dye solar cells on plastic: a combined theoretical and experimental optimization approach. <i>Energy and Environmental Science</i> , 2016 , 9, 2061-2071	35.4	15
58	Solution processed high refractive index contrast distributed Bragg reflectors. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 4532-4537	7.1	25
57	Integration of Photonic Crystals into Flexible Dye Solar Cells: A Route toward Bendable and Adaptable Optoelectronic Devices Displaying Structural Color and Enhanced Efficiency. <i>Advanced Optical Materials</i> , 2016 , 4, 464-471	8.1	25
56	Flexible Distributed Bragg Reflectors from Nanocolumnar Templates. <i>Advanced Optical Materials</i> , 2015 , 3, 171-175	8.1	13
55	Absorption Enhancement in Organic-Inorganic Halide Perovskite Films with Embedded Plasmonic Gold Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 18635-18640	3.8	89
54	Nanolevitation Phenomena in Real Plane-Parallel Systems Due to the Balance between Casimir and Gravity Forces. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 5663-5670	3.8	12
53	Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 1785-1792	6.8	9

(2012-2015)

52	Synergistic strategies for the preparation of highly efficient dye-sensitized solar cells on plastic substrates: combination of chemical and physical sintering. <i>RSC Advances</i> , 2015 , 5, 76795-76803	3.7	6
51	Full solution processed mesostructured optical resonators integrating colloidal semiconductor quantum dots. <i>Nanoscale</i> , 2015 , 7, 16583-9	7.7	8
50	Optical Description of Mesostructured Organic-Inorganic Halide Perovskite Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 48-53	6.4	51
49	Skin Protection: Biocompatible Films with Tailored Spectral Response for Prevention of DNA Damage in Skin Cells (Adv. Healthcare Mater. 13/2015). <i>Advanced Healthcare Materials</i> , 2015 , 4, 2048-20)48 ^{.1}	
48	Adaptable Ultraviolet Reflecting Polymeric Multilayer Coatings of High Refractive Index Contrast. <i>Advanced Optical Materials</i> , 2015 , 3, 1633-1639	8.1	14
47	Environmental Effects on the Photophysics of Organic-Inorganic Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2200-5	6.4	181
46	Fine Tuning the Emission Properties of Nanoemitters in Multilayered Structures by Deterministic Control of their Local Photonic Environment. <i>Small</i> , 2015 , 11, 2727-32	11	14
45	Biocompatible films with tailored spectral response for prevention of DNA damage in skin cells. <i>Advanced Healthcare Materials</i> , 2015 , 4, 1944-8	10.1	11
44	Highly efficient perovskite solar cells with tunable structural color. <i>Nano Letters</i> , 2015 , 15, 1698-702	11.5	240
43	Nanometer-Scale Precision Tuning of 3D Photonic Crystals Made Possible Using Polyelectrolytes with Controlled Short Chain Length and Narrow Polydispersity. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1300051	4.6	3
42	Fully stable numerical calculations for finite one-dimensional structures: Mapping the transfer matrix method. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2014 , 134, 9-20	2.1	14
41	Multidirectional Light-Harvesting Enhancement in Dye Solar Cells by Surface Patterning. <i>Advanced Optical Materials</i> , 2014 , 2, 879-884	8.1	12
40	Panchromatic porous specular back reflectors for efficient transparent dye solar cells. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 663-8	3.6	16
39	Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid). <i>Langmuir</i> , 2013 , 29, 1985	- 9 4	76
38	Angular response of photonic crystal based dye sensitized solar cells. <i>Energy and Environmental Science</i> , 2013 , 6, 1260-1266	35.4	36
37	Resonant photocurrent generation in dye-sensitized periodically nanostructured photoconductors by optical field confinement effects. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7803-6	16.4	17
36	Selective UV Reflecting Mirrors Based on Nanoparticle Multilayers. <i>Advanced Functional Materials</i> , 2013 , 23, 2805-2811	15.6	65
35	Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells. <i>Electrochimica Acta</i> , 2012 , 75, 139-147	6.7	61

34	Enhanced diffusion through porous nanoparticle optical multilayers. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1751-1757		22
33	Characterization of mesoporous thin films by specular reflectance porosimetry. <i>Langmuir</i> , 2012 , 28, 137	747-82	10
32	Introducing structural colour in DSCs by using photonic crystals: interplay between conversion efficiency and optical properties. <i>Energy and Environmental Science</i> , 2012 , 5, 8238	35.4	45
31	Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2012 , 50, 945-956	2.6	93
30	Integration of gold nanoparticles in optical resonators. <i>Langmuir</i> , 2012 , 28, 9161-7	4	11
29	Efficient Transparent Thin Dye Solar Cells Based on Highly Porous 1D Photonic Crystals. <i>Advanced Functional Materials</i> , 2012 , 22, 1303-1310	15.6	72
28	Collective osmotic shock in ordered materials. <i>Nature Materials</i> , 2011 , 11, 53-7	27	54
27	Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications. <i>Energy and Environmental Science</i> , 2011 , 4, 4800	35.4	96
26	Porous Supramolecularly Templated Optical Resonators Built in 1D Photonic Crystals. <i>Advanced Functional Materials</i> , 2011 , 21, 2534-2540	15.6	30
25	Interplay of resonant cavity modes with localized surface plasmons: optical absorption properties of Bragg stacks integrating gold nanoparticles. <i>Advanced Materials</i> , 2011 , 23, 2108-12	24	31
24	Angular emission properties of a layer of rare-earth based nanophosphors embedded in one-dimensional photonic crystal coatings. <i>Applied Physics Letters</i> , 2011 , 99, 051111	3.4	3
23	Theoretical Analysis of the Performance of One-Dimensional Photonic Crystal-Based Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3681-3687	3.8	62
22	Flexible, Adhesive, and Biocompatible Bragg Mirrors Based on Polydimethylsiloxane Infiltrated Nanoparticle Multilayers. <i>Chemistry of Materials</i> , 2010 , 22, 3909-3915	9.6	42
21	TiO2BiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6408		63
20	Porous One-Dimensional Photonic Crystal Coatings for Gas Detection. <i>IEEE Sensors Journal</i> , 2010 , 10, 1206-1212	4	18
19	Versatility and multifunctionality of highly reflecting Bragg mirrors based on nanoparticle multilayers. <i>Journal of Materials Chemistry</i> , 2010 , 20, 8240		31
18	Environmentally responsive nanoparticle-based luminescent optical resonators. <i>Nanoscale</i> , 2010 , 2, 936	5- 7 4.†	22
17	Gallium arsenide infiltration of nanoporous multilayers: a route to high-dielectric-contrast one-dimensional photonic crystals. <i>Small</i> , 2010 , 6, 1283-7	11	6

LIST OF PUBLICATIONS

16	Porous One-Dimensional Photonic Crystals Improve the Power-Conversion Efficiency of Dye-Sensitized Solar Cells. <i>Advanced Materials</i> , 2009 , 21, 764-770	24	227
15	Mesostructured thin films as responsive optical coatings of photonic crystals. <i>Small</i> , 2009 , 5, 2309-15	11	32
14	Experimental Demonstration of the Mechanism of Light Harvesting Enhancement in Photonic-Crystal-Based Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 1150-115	4 ^{3.8}	56
13	Control over the structural and optical features of nanoparticle-based one-dimensional photonic crystals. <i>Langmuir</i> , 2009 , 25, 2443-8	4	31
12	Molding with nanoparticle-based one-dimensional photonic crystals: a route to flexible and transferable Bragg mirrors of high dielectric contrast. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3144		57
11	Nanoparticle Based Multilayers as Multifunctional Optical Coatings. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1188, 15		
10	Nanoparticle-based one-dimensional photonic crystals. <i>Langmuir</i> , 2008 , 24, 4430-4	4	171
9	Sorption Properties of Mesoporous Multilayer Thin Films. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 3157-3163	3.8	101
8	Spectral Response of Opal-Based Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 13-17	3.8	131
7	Photoconducting Bragg Mirrors based on TiO2 Nanoparticle Multilayers. <i>Advanced Functional Materials</i> , 2008 , 18, 2708-2715	15.6	7 ²
6	Mesoporous Anatase TiO2 Films: Use of Ti K XANES for the Quantification of the Nanocrystalline Character and Substrate Effects in the Photocatalysis Behavior. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 10886-10893	3.8	116
5	Mesoporous Hybrid Thin Films: Building Blocks for Complex Materials with Spatial Organization. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1007, 1		1
4	Hybrid non-silica mesoporous thin films. New Journal of Chemistry, 2005, 29, 59-63	3.6	42
3	Enhancement of salicylate photodegradation under bias in binary mixtures. <i>Catalysis Today</i> , 2002 , 76, 133-139	5.3	9
2	Photooxidation of organic mixtures on biased TiO2 films. <i>Environmental Science & Environmental Scienc</i>	10.3	58
1	Optoelectronic Devices Based on Scaffold Stabilized Black-Phase CsPbI 3 Nanocrystals. <i>Advanced Optical Materials</i> ,2102112	8.1	O