
Thuat T Trinh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3219671/publications.pdf Version: 2024-02-01

Τημιντ Τ. Τρινη

#	Article	IF	CITATIONS
1	Impact of Organic Templates on the Selective Formation of Zeolite Oligomers. Angewandte Chemie - International Edition, 2021, 60, 7111-7116.	7.2	7
2	Impact of Organic Templates on the Selective Formation of Zeolite Oligomers. Angewandte Chemie, 2021, 133, 7187-7192.	1.6	9
3	Initial degradation mechanism of salicylic acid via electrochemical process. Chemical Physics, 2021, 543, 111071.	0.9	4
4	How do the doping concentrations of N and B in graphene modify the water adsorption?. RSC Advances, 2021, 11, 19560-19568.	1.7	10
5	Rücktitelbild: Impact of Organic Templates on the Selective Formation of Zeolite Oligomers (Angew.) Tj ETQq1	1 0,7843 1.6	14 rgBT /Ov
6	Mechanism of proton transport in water clusters and the effect of electric fields: A DFT study. Current Applied Physics, 2021, 25, 62-69.	1.1	7
7	Elastic and thermodynamic properties of the major clinker phases of Portland cement: Insights from first principles calculations. Construction and Building Materials, 2021, 287, 122873.	3.2	18
8	Effect of hydrogen-bonding networks in water on the proton conductivity properties of metal–organic frameworks. Journal of Science: Advanced Materials and Devices, 2021, 6, 509-515.	1.5	7
9	Thiosquaramide-Based Supramolecular Polymers: Aromaticity Gain in a Switched Mode of Self-Assembly. Journal of the American Chemical Society, 2020, 142, 19907-19916.	6.6	26
10	Elucidating the Role of Tetraethylammonium in the Silicate Condensation Reaction from <i>Ab Initio</i> Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2020, 124, 10210-10218.	1.2	11
11	Application of electrochemical oxidation in cold climate regions – Effect of temperature, pH and anode material on the degradation of Bisphenol A and the formation of disinfection by-products. Journal of Environmental Chemical Engineering, 2020, 8, 104183.	3.3	15
12	Fuel characterization and thermal degradation kinetics of biomass from phytoremediation plants. Biomass and Bioenergy, 2020, 134, 105469.	2.9	19
13	Coverage degrees of colloids on electrochemical electrodes and signal amplification for anti-citrullinated peptide antibody detection. Sensing and Bio-Sensing Research, 2020, 27, 100322.	2.2	1
14	Insights into the Kinetics of Intermediate Formation during Electrochemical Oxidation of the Organic Model Pollutant Salicylic Acid in Chloride Electrolyte. Water (Switzerland), 2019, 11, 1322.	1.2	10
15	Energy crops for sustainable phytoremediation – Thermal decomposition kinetics. Energy Procedia, 2019, 158, 873-878.	1.8	14
16	Temperature anisotropy at equilibrium reveals nonlocal entropic contributions to interfacial properties. Physical Review E, 2018, 97, 012126.	0.8	3
17	Degradation of the chemotherapy drug 5-fluorouracil on medical-grade silver surfaces. Applied Surface Science, 2018, 435, 1213-1219.	3.1	5
18	Correlation between the porosity of γ-Al2O3 and the performance of CuO–ZnO–Al2O3 catalysts for CO2 hydrogenation into methanol. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 171-185.	0.8	9

Thuat T Trinh

#	Article	IF	CITATIONS
19	Diffusion of gas mixtures in the sI hydrate structure. Journal of Chemical Physics, 2018, 148, 214701.	1.2	17
20	Thermodynamic properties of hydrogen dissociation reaction from the small system method and reactive force field ReaxFF. Chemical Physics Letters, 2017, 672, 128-132.	1.2	6
21	Rare event simulations reveal subtle key steps in aqueous silicate condensation. Physical Chemistry Chemical Physics, 2017, 19, 13361-13371.	1.3	27
22	Geometrical flexibility of platinum nanoclusters: impacts on catalytic decomposition of ethylene glycol. Physical Chemistry Chemical Physics, 2017, 19, 28596-28603.	1.3	6
23	CFD pre-study of Nozzle reactor for fast hydrothermal liquefaction. Energy Procedia, 2017, 142, 861-866.	1.8	5
24	Selective dissolution of woody biomass under hydrothermal conditions. Energy Procedia, 2017, 142, 867-872.	1.8	1
25	Note: A new truncation correction for the configurational temperature extends its applicability to interaction potentials with a discontinuous force. Journal of Chemical Physics, 2016, 144, 056101.	1.2	1
26	A Molecular Dynamics Simulation Study on Separation Selectivity of CO2/CH4 Mixture in Mesoporous Carbons. Energy Procedia, 2016, 86, 144-149.	1.8	12
27	The mechanism of the initial step of germanosilicate formation in solution: a first-principles molecular dynamics study. Physical Chemistry Chemical Physics, 2016, 18, 14419-14425.	1.3	7
28	Coherent description of transport across the water interface: From nanodroplets to climate models. Physical Review E, 2016, 93, 032801.	0.8	23
29	Heat transport through a solid–solid junction: the interface as an autonomous thermodynamic system. Physical Chemistry Chemical Physics, 2016, 18, 13741-13745.	1.3	25
30	Chemically accurate energy barriers of small gas molecules moving through hexagonal water rings. Physical Chemistry Chemical Physics, 2016, 18, 17831-17835.	1.3	5
31	A test on reactive force fields for the study of silica dimerization reactions. Journal of Chemical Physics, 2015, 143, 184113.	1.2	19
32	Finite-size and truncation effects for microscopic expressions for the temperature at equilibrium and nonequilibrium. Journal of Chemical Physics, 2015, 143, 114106.	1.2	5
33	Graphene coatings for chemotherapy: avoiding silver-mediated degradation. 2D Materials, 2015, 2, 025004.	2.0	11
34	Heat and Mass Transfer across Interfaces in Complex Nanogeometries. Physical Review Letters, 2015, 114, 065901.	2.9	19
35	Simulation of Pore Width and Pore Charge Effects on Selectivities of CO2 vs. H2 from a Syngas-like Mixture in Carbon Mesopores. Energy Procedia, 2015, 64, 150-159.	1.8	9
36	A procedure to find thermodynamic equilibrium constants for CO ₂ and CH ₄ adsorption on activated carbon. Physical Chemistry Chemical Physics, 2015, 17, 8223-8230.	1.3	6

THUAT T TRINH

#	Article	IF	CITATIONS
37	Effects of wet torrefaction on pyrolysis of woody biomass fuels. Energy, 2015, 88, 443-456.	4.5	93
38	The role of a structure directing agent tetramethylammonium template in the initial steps of silicate oligomerization in aqueous solution. Physical Chemistry Chemical Physics, 2015, 17, 21810-21818.	1.3	27
39	Influence of Curvature on the Transfer Coefficients for Evaporation and Condensation of Lennard-Jones Fluid from Square-Gradient Theory and Nonequilibrium Molecular Dynamics. Journal of Physical Chemistry C, 2015, 119, 8160-8173.	1.5	28
40	Low barriers for hydrogen diffusion in sII clathrate. Physical Chemistry Chemical Physics, 2015, 17, 13808-13812.	1.3	34
41	Density Functional Theory Study on the Interactions of Metal Ions with Long Chain Deprotonated Carboxylic Acids. Journal of Physical Chemistry A, 2015, 119, 10195-10203.	1.1	33
42	Ab Initio Molecular Dynamics Study on the Interactions between Carboxylate Ions and Metal Ions in Water. Journal of Physical Chemistry B, 2015, 119, 10710-10719.	1.2	28
43	Aromatic Gain in a Supramolecular Polymer. Angewandte Chemie - International Edition, 2015, 54, 10502-10506.	7.2	57
44	Calculation of the chemical potential and the activity coefficient of two layers of CO ₂ adsorbed on a graphite surface. Physical Chemistry Chemical Physics, 2015, 17, 1226-1233.	1.3	12
45	Mechanical instability of monocrystalline and polycrystalline methane hydrates. Nature Communications, 2015, 6, 8743.	5.8	93
46	On the relation between the Langmuir and thermodynamic flux equations. Frontiers in Physics, 2014, 1,	1.0	7
47	Thermodynamic characterization of two layers of CO2 on a graphite surface. Chemical Physics Letters, 2014, 612, 214-218.	1.2	8
48	Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields. Journal of Chemical Physics, 2014, 141, 134504.	1.2	21
49	Bridging scales with thermodynamics: from nano to macro. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 023002.	0.7	15
50	Non-isothermal pyrolysis of torrefied stump – A comparative kinetic evaluation. Applied Energy, 2014, 136, 759-766.	5.1	65
51	Clarifying the role of sodium in the silica oligomerization reaction. Physical Chemistry Chemical Physics, 2013, 15, 1123-1129.	1.3	31
52	Selectivity and self-diffusion of CO2 and H2 in a mixture on a graphite surface. Frontiers in Chemistry, 2013, 1, 38.	1.8	24
53	The initial step of silicate versus aluminosilicate formation in zeolite synthesis: a reaction mechanism in water with a tetrapropylammonium template. Physical Chemistry Chemical Physics, 2012, 14, 3369.	1.3	40
54	Reply to "Comment on 'Structure-Directing Role of Counterions in the Initial Stage of Zeolite Synthesis― Journal of Physical Chemistry C, 2012, 116, 1622-1623.	1.5	6

Thuat T Trinh

#	Article	IF	CITATIONS
55	Structure-Directing Role of Counterions in the Initial Stage of Zeolite Synthesis. Journal of Physical Chemistry C, 2011, 115, 9561-9567.	1.5	42
56	Mechanism of the Initial Stage of Silicate Oligomerization. Journal of the American Chemical Society, 2011, 133, 6613-6625.	6.6	99
57	The relative stability of zeolite precursor tetraalkylammonium–silicate oligomer complexes. Microporous and Mesoporous Materials, 2011, 146, 82-87.	2.2	23
58	Role of Water in Silica Oligomerization. Journal of Physical Chemistry C, 2009, 113, 2647-2652.	1.5	67
59	Effect of Counter Ions on the Silica Oligomerization Reaction. ChemPhysChem, 2009, 10, 1775-1782.	1.0	46
60	The role of water in silicate oligomerization reaction. Physical Chemistry Chemical Physics, 2009, 11, 5092.	1.3	72
61	Mechanism of Oligomerization Reactions of Silica. Journal of Physical Chemistry B, 2006, 110, 23099-23106.	1.2	140