Holger Frauenrath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3219179/publications.pdf

Version: 2024-02-01

60 papers 2,363 citations

28 h-index 206112 48 g-index

68 all docs 68 docs citations

68 times ranked 3039 citing authors

#	Article	IF	CITATIONS
1	Enhanced ductility in high performance polyamides due to strain-induced phase transitions. Polymer, 2022, 238, 124424.	3.8	3
2	Blatter-type radicals as polarizing agents for electrochemical overhauser dynamic nuclear polarization. Chemical Communications, 2022, 58, 689-692.	4.1	5
3	Structure–Property Relationships in Bithiophenes with Hydrogenâ€Bonded Substituents. Chemistry - A European Journal, 2021, 27, 3348-3360.	3.3	5
4	Lamellar carbon-aluminosilicate nanocomposites with macroscopic orientation. Nanoscale, 2021, 13, 13650-13657.	5.6	0
5	Polysiloxanes Modified with Different Types and Contents of Polar Groups: Synthesis, Structure, and Thermal and Dielectric Properties. Macromolecules, 2021, 54, 5737-5749.	4.8	37
6	High-performance polyamides with engineered disorder. Polymer Chemistry, 2021, 12, 6426-6435.	3.9	6
7	Semiaromatic Polyamides with Re-Entrant Chain Folding Templated by "U-Turn―Repeat Units. Macromolecules, 2021, 54, 11170-11179.	4.8	2
8	Semiaromatic polyamides with enhanced charge carrier mobility. Polymer Chemistry, 2021, 12, 6914-6926.	3.9	1
9	Optical gap and fundamental gap of oligoynes and carbyne. Nature Communications, 2020, 11, 4797.	12.8	28
10	Longâ€Lived Photocharges in Supramolecular Polymers of Lowâ€Bandâ€Gap Chromophores. Chemistry - A European Journal, 2020, 26, 9506-9517.	3.3	8
11	Engineering polymers with improved charge transport properties from bithiophene-containing polyamides. Journal of Materials Chemistry C, 2020, 8, 6281-6292.	5.5	5
12	Crystallization and Organic Fieldâ€Effect Transistor Performance of a Hydrogenâ€Bonded Quaterthiophene. Chemistry - A European Journal, 2020, 26, 10265-10275.	3.3	5
13	Hexayne Amphiphiles and Bolaamphiphiles. Chemistry - A European Journal, 2020, 26, 8907-8915.	3.3	4
14	Unusually Long-Lived Photocharges in Helical Organic Semiconductor Nanostructures. ACS Nano, 2018, 12, 9116-9125.	14.6	19
15	Selfâ€Assembled Monolayers as Patterning Tool for Organic Electronic Devices. Advanced Materials, 2017, 29, 1605286.	21.0	72
16	Synthesis and characterization of semiaromatic polyamides comprising benzofurobenzofuran repeating units. Polymer Chemistry, 2017, 8, 2197-2209.	3.9	14
17	Charge separation in an acceptor–donor–acceptor triad material with a lamellar structure. Journal of Materials Chemistry C, 2017, 5, 1383-1393.	5.5	8
18	Highâ€ŧemperature copolyamides obtained by the efficient transamidation of crystalline–crystalline polyamide blends. Journal of Applied Polymer Science, 2017, 134, .	2.6	12

#	Article	IF	CITATIONS
19	Synthesis and Use of Reactive Molecular Precursors for the Preparation of Carbon Nanomaterials. ChemistrySelect, 2017, 2, .	1.5	0
20	Templating for hierarchical structure control in carbon materials. Nanoscale, 2016, 8, 18828-18848.	5.6	34
21	Preparation of Carbon Nanosheets at Room Temperature. Journal of Visualized Experiments, 2016, , .	0.3	0
22	Soft-landing electrospray ion beam deposition of sensitive oligoynes on surfaces in vacuum. International Journal of Mass Spectrometry, 2015, 377, 228-234.	1.5	25
23	Solubility and Crystallizability: Facile Access to Functionalized π onjugated Compounds with Chlorendylimide Protecting Groups. Chemistry - A European Journal, 2015, 21, 1542-1553.	3.3	10
24	Facile synthesis of oligoyne amphiphiles and their rotaxanes. Chemical Science, 2015, 6, 564-574.	7.4	52
25	Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature. Nature Chemistry, 2014, 6, 468-476.	13.6	97
26	A toolbox of oligopeptide-modified polymers for tailored elastomers. Nature Communications, 2014, 5, 4728.	12.8	32
27	Aggregates from Perylene Bisimide Oligopeptides as a Test Case for Giant Vibrational Circular Dichroism. Journal of Physical Chemistry B, 2014, 118, 11152-11160.	2.6	15
28	Two-Fold Odd–Even Effect in Self-Assembled Nanowires from Oligopeptide-Polymer-Substituted Perylene Bisimides. Journal of the American Chemical Society, 2014, 136, 3919-3927.	13.7	103
29	Hierarchically Structured Microfibers of "Single Stack―Perylene Bisimide and Quaterthiophene Nanowires. ACS Nano, 2013, 7, 8498-8508.	14.6	88
30	Droplets Out of Equilibrium. Science, 2013, 341, 243-244.	12.6	29
31	A multistep single-crystal-to-single-crystal bromodiacetylene dimerization. Nature Chemistry, 2013, 5, 327-334.	13.6	53
32	Materials Taking a Lesson from Nature. Chimia, 2013, 67, 782.	0.6	3
33	Low-temperature Preparation of Functional Carbon Nanocapsules <1>via 1 Self-assembly and Carbonization of Hexayne Amphiphiles. Chimia, 2013, 67, 429-429.	0.6	0
34	Development of a robust supramolecular method to prepare well-defined nanofibrils from conjugated molecules. Chemical Science, 2012, 3, 1512.	7.4	51
35	Multi-Set Point Intermittent Contact (MUSIC) Mode Atomic Force Microscopy of Oligothiophene Fibrils. ACS Macro Letters, 2012, 1, 380-383.	4.8	21
36	Low-Temperature Preparation of Tailored Carbon Nanostructures in Water. Nano Letters, 2012, 12, 2573-2578.	9.1	34

#	Article	IF	CITATIONS
37	Elements for a Rational Polymer Approach towards Carbon Nanostructures. Angewandte Chemie - International Edition, 2012, 51, 6569-6571.	13.8	32
38	Carbon-Rich Nanostructures from Molecular Precursors. Materials Research Society Symposia Proceedings, 2011, 1304, 1.	0.1	0
39	Nanostructured Carbonaceous Materials from Molecular Precursors. Angewandte Chemie - International Edition, 2010, 49, 6496-6515.	13.8	144
40	Synthesis of Diacetyleneâ€Containing Peptide Building Blocks and Amphiphiles, Their Selfâ€Assembly and Topochemical Polymerization in Organic Solvents. Chemistry - A European Journal, 2009, 15, 388-404.	3.3	66
41	Perfluorophenyl–Phenyl Interactions in the Crystallization and Topochemical Polymerization of Triacetylene Monomers. Chemistry - A European Journal, 2009, 15, 9105-9116.	3.3	41
42	Coordinationâ€Driven Selfâ€Assembly of PEOâ€Functionalized Perylene Bisimides: Supramolecular Diversity from a Limited Set of Molecular Building Blocks. Angewandte Chemie - International Edition, 2009, 48, 4480-4483.	13.8	33
43	Glycosylated Oligo(ethynylene)s <i>via</i> a Pd/Zn-Mediated Cross-Coupling Reaction. Chimia, 2009, 63, 208-210.	0.6	4
44	Chiroptical Properties of Multipleâ∈Helical, Oligopeptideâ∈Substituted Poly(diacetylene)s in Solution. Macromolecular Rapid Communications, 2008, 29, 330-339.	3.9	11
45	A General Concept for the Preparation of Hierarchically Structured Ï€â€Conjugated Polymers. Chemistry - A European Journal, 2008, 14, 2942-2955.	3.3	78
46	Molecular Level Control over Hierarchical Structure Formation and Polymerization of Oligopeptideâ€Polymer Conjugates. Advanced Materials, 2008, 20, 409-414.	21.0	46
47	Soluble Poly(diacetylene)s Using the Perfluorophenylâ^'Phenyl Motif as a Supramolecular Synthon. Journal of the American Chemical Society, 2008, 130, 11437-11445.	13.7	59
48	Consecutive Conformational Transitions and Deaggregation of Multiple-Helical Poly(diacetylene)s. Nano Letters, 2008, 8, 1660-1666.	9.1	33
49	A Convenient Negishi Protocol for the Synthesis of Glycosylated Oligo(ethy 2008, 10, 4525-4528.	rnylene)s. 4.6	Organic Let
50	Poly(diacetylene)s from Preorganized Monomers. Synfacts, 2008, 2008, 1273-1273.	0.0	0
51	Functional, Hierarchically Structured Poly(diacetylene)s via Supramolecular Self-Assembly. Macromolecular Bioscience, 2007, 7, 136-143.	4.1	29
52	1-O-Vinyl Glycosides via Tebbe Olefination, Their Use as Chiral Auxiliaries and Monomers. Journal of Organic Chemistry, 2006, 71, 5457-5467.	3.2	21
53	Alternating Diacetylene Copolymer Utilizing Perfluorophenylâ^Phenyl Interactions. Journal of the American Chemical Society, 2006, 128, 5541-5547.	13.7	89
54	Topochemical Polymerization in Supramolecular Polymers of Oligopeptide-Functionalized Diacetylenes. Angewandte Chemie - International Edition, 2006, 45, 5383-5386.	13.8	137

#	Article	IF	CITATION
55	Dendronized polymers—building a new bridge from molecules to nanoscopic objects. Progress in Polymer Science, 2005, 30, 325-384.	24.7	396
56	Stereospecific Polymerization of Methyl Methacrylate with Single-Component Zirconocene Complexes:  Control of Stereospecificity via Catalyst Symmetry. Macromolecules, 2001, 34, 14-19.	4.8	81
57	First Synthesis of an AB Block Copolymer with Polyethylene and Poly(methyl methacrylate) Blocks Using a Zirconocene Catalyst. Macromolecular Rapid Communications, 2001, 22, 1147.	3.9	28
58	Deviation from Single-Site Behavior in Zirconocene/MAO Catalyst Systems, 1. Influence of Monomer, Catalyst, and Cocatalyst Concentration. Macromolecular Chemistry and Physics, 2001, 202, 3543-3550.	2.2	8
59	Deviation from Single-Site Behavior in Zirconocene/MAO Catalyst Systems, 2. Influence of Polymerization Temperature. Macromolecular Chemistry and Physics, 2001, 202, 3551-3559.	2.2	10
60	Polymerization of 1-hexene catalyzed by bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane; effect of temperature on the molecular weight and the microstructure of poly(1-hexene). Macromolecular Rapid Communications, 1998, 19, 391-395.	3.9	13