
Miguel Angel Quesada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3219032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elucidating the role of polygalacturonase genes in strawberry fruit softening. Journal of Experimental Botany, 2020, 71, 7103-7117.	2.4	41
2	A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends in Food Science and Technology, 2019, 87, 47-58.	7.8	141
3	The History and Current Status of Genetic Transformation in Berry Crops. Compendium of Plant Genomes, 2018, , 139-160.	0.3	3
4	Unravelling the nanostructure of strawberry fruit pectins by endo-polygalacturonase digestion and atomic force microscopy. Food Chemistry, 2017, 224, 270-279.	4.2	40
5	Structural changes in cell wall pectins during strawberry fruit development. Plant Physiology and Biochemistry, 2017, 118, 55-63.	2.8	68
6	Antisense down-regulation of the strawberry β-galactosidase gene <i>FaβGal4</i> increases cell wall galactose levels and reduces fruit softening. Journal of Experimental Botany, 2016, 67, 619-631.	2.4	122
7	The nanostructural characterization of strawberry pectins in pectate lyase or polygalacturonase silenced fruits elucidates their role in softening. Carbohydrate Polymers, 2015, 132, 134-145.	5.1	58
8	Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy. Annals of Botany, 2014, 114, 1375-1383.	1.4	177
9	Influence of aspect in soil and vegetation water dynamics in dry Mediterranean conditions: functional adjustment of evergreen and semiâ€deciduous growth forms. Ecohydrology, 2013, 6, 241-255.	1.1	22
10	Effect of simultaneous down-regulation of pectate lyase and endo-β-1,4-glucanase genes on strawberry fruit softening. Molecular Breeding, 2013, 31, 313-322.	1.0	20
11	Seasonal changes in the soil hydrological and erosive response depending on aspect, vegetation type and soil water repellency in different Mediterranean microenvironments. Solid Earth, 2013, 4, 497-509.	1.2	81
12	Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits. Journal of Experimental Botany, 2013, 64, 3803-3815.	2.4	84
13	Structural characterization of cell wall pectin fractions in ripe strawberry fruits using AFM. Carbohydrate Polymers, 2012, 88, 882-890.	5.1	116
14	Water relations in culture media influence maturation of avocado somatic embryos. Journal of Plant Physiology, 2011, 168, 2028-2034.	1.6	18
15	Evaluation of the role of the endo-β-(1,4)-glucanase gene FaEG3 in strawberry fruit softening. Postharvest Biology and Technology, 2010, 55, 8-14.	2.9	34
16	Antisense Down-Regulation of the <i>FaPG1</i> Gene Reveals an Unexpected Central Role for Polygalacturonase in Strawberry Fruit Softening Â. Plant Physiology, 2009, 150, 1022-1032.	2.3	182
17	The polygalacturonase		

#	Article	IF	CITATIONS
19	Partial demethylation of oligogalacturonides by pectin methyl esterase 1 is required for eliciting defence responses in wild strawberry (<i>Fragaria vesca</i>). Plant Journal, 2008, 54, 43-55.	2.8	134
20	Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening. Journal of Experimental Botany, 2008, 59, 2769-2779.	2.4	109
21	Antisense inhibition of pectate lyase gene expression in strawberry fruit: Characteristics of fruits processed into jam. Journal of Food Engineering, 2007, 79, 194-199.	2.7	31
22	Evidence of frequent integration of non-T-DNA vector backbone sequences in transgenic strawberry plant. Journal of Bioscience and Bioengineering, 2006, 101, 508-510.	1.1	25
23	The strawberry gene FaGAST affects plant growth through inhibition of cell elongation. Journal of Experimental Botany, 2006, 57, 2401-2411.	2.4	83
24	Changes in the water binding characteristics of the cell walls from transgenic Nicotiana tabacum leaves with enhanced levels of peroxidase activity. Physiologia Plantarum, 2004, 122, 504-512.	2.6	19
25	Structural and physiological changes in the roots of tomato plants over-expressing a basic peroxidase. Physiologia Plantarum, 2003, 118, 422-429.	2.6	47
26	Manipulation of Strawberry Fruit Softening by Antisense Expression of a Pectate Lyase Gene. Plant Physiology, 2002, 128, 751-759.	2.3	309
27	Influences of exogenous sucrose on juvenile avocado during in vitro cultivation and subsequent ex vitro acclimatization. Trees - Structure and Function, 2002, 16, 569-575.	0.9	5
28	Effects of in vitro tissue culture conditions and acclimatization on the contents of Rubisco, leaf soluble proteins, photosynthetic pigments, and C/N ratio. Journal of Plant Physiology, 2001, 158, 835-840.	1.6	37
29	Title is missing!. Plant Cell, Tissue and Organ Culture, 2000, 62, 101-106.	1.2	14
30	Biochemical and phenotypical characterization of transgenic tomato plants overexpressing a basic peroxidase. Physiologia Plantarum, 1999, 106, 355-362.	2.6	65
31	Pollen sporopollenin: degradation and structural elucidation. Sexual Plant Reproduction, 1999, 12, 171-178.	2.2	158
32	A convenient protocol for extraction and purification of DNA from Fragaria. In Vitro Cellular and Developmental Biology - Plant, 1999, 35, 152-153.	0.9	25
33	Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Letters, 1999, 457, 80-84.	1.3	95
34	Regeneration and transformation via Agrobacterium tumefaciens of the strawberry cultivar Chandler. Plant Cell, Tissue and Organ Culture, 1998, 54, 29-36.	1.2	69
35	Isolation of intact pollen exine using anhydrous hydrogen fluoride. Grana, 1998, 37, 93-96.	0.4	36
36	Expression of a highly basic peroxidase gene in NaCl-adapted tomato cell suspensions. FEBS Letters, 1997, 407, 357-360.	1.3	11

MIGUEL ANGEL QUESADA

#	Article	IF	CITATIONS
37	Shoot regeneration and Agrobacterium-mediated transformation of Fragaria vesca L. Plant Cell Reports, 1996, 15, 642-646.	2.8	61
38	Peroxidase activity and isoenzymes in the culture medium of NaCl adapted tomato suspension cells. Plant Cell, Tissue and Organ Culture, 1996, 44, 161-167.	1.2	49
39	Shoot regeneration and Agrobacterium -mediated transformation of Fragaria vesca L Plant Cell Reports, 1996, 15, 642-646.	2.8	9
40	Characterization and in situ localization of a salt-induced tomato peroxidase mRNA. Plant Molecular Biology, 1994, 25, 105-114.	2.0	64
41	In vitro germination of pepper pollen in liquid medium. Scientia Horticulturae, 1994, 57, 273-281.	1.7	30
42	Induction of a tomato peroxidase gene in vascular tissue. FEBS Letters, 1994, 347, 195-198.	1.3	22
43	Peroxidase and IAA oxidase activities and peroxidase isoenzymes in the pericarp of seeded and seedless "Redhaven―peach fruit. Journal of Plant Growth Regulation, 1992, 11, 1-6.	2.8	15
44	Partial deglycosylation of an anionic isoperoxidase from peach seeds - effect on enzyme activity, stability and antigenicity. Physiologia Plantarum, 1991, 83, 144-148.	2.6	11
45	Purification of an anionic isoperoxidase from peach seeds and its immunological comparison with other anionic isoperoxidases. Physiologia Plantarum, 1990, 79, 623-628.	2.6	20
46	Purification of an anionic isoperoxidase from peach seeds and its immunological comparison with other anionic isoperoxidases. Physiologia Plantarum, 1990, 79, 623-628.	2.6	12
47	Changes in indole-3-acetic acid, indole-3-acetic acid oxidase, and peroxidase isoenzymes in the seeds of developing neach fruits. Journal of Plant Growth Regulation, 1989, 8, 255-261	2.8	15