Miguel Angel Quesada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3219032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manipulation of Strawberry Fruit Softening by Antisense Expression of a Pectate Lyase Gene. Plant Physiology, 2002, 128, 751-759.	4.8	309
2	Antisense Down-Regulation of the <i>FaPG1</i> Gene Reveals an Unexpected Central Role for Polygalacturonase in Strawberry Fruit Softening Â. Plant Physiology, 2009, 150, 1022-1032.	4.8	182
3	Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy. Annals of Botany, 2014, 114, 1375-1383.	2.9	177
4	Pollen sporopollenin: degradation and structural elucidation. Sexual Plant Reproduction, 1999, 12, 171-178.	2.2	158
5	A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends in Food Science and Technology, 2019, 87, 47-58.	15.1	141
6	Partial demethylation of oligogalacturonides by pectin methyl esterase 1 is required for eliciting defence responses in wild strawberry (<i>Fragaria vesca</i>). Plant Journal, 2008, 54, 43-55.	5.7	134
7	Antisense down-regulation of the strawberry β-galactosidase gene <i>FaβGal4</i> increases cell wall galactose levels and reduces fruit softening. Journal of Experimental Botany, 2016, 67, 619-631.	4.8	122
8	Structural characterization of cell wall pectin fractions in ripe strawberry fruits using AFM. Carbohydrate Polymers, 2012, 88, 882-890.	10.2	116
9	Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening. Journal of Experimental Botany, 2008, 59, 2769-2779.	4.8	109
10	Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Letters, 1999, 457, 80-84.	2.8	95
11	Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits. Journal of Experimental Botany, 2013, 64, 3803-3815.	4.8	84
12	The strawberry gene FaGAST affects plant growth through inhibition of cell elongation. Journal of Experimental Botany, 2006, 57, 2401-2411.	4.8	83
13	Seasonal changes in the soil hydrological and erosive response depending on aspect, vegetation type and soil water repellency in different Mediterranean microenvironments. Solid Earth, 2013, 4, 497-509.	2.8	81
14	Regeneration and transformation via Agrobacterium tumefaciens of the strawberry cultivar Chandler. Plant Cell, Tissue and Organ Culture, 1998, 54, 29-36.	2.3	69
15	Structural changes in cell wall pectins during strawberry fruit development. Plant Physiology and Biochemistry, 2017, 118, 55-63.	5.8	68
16	Biochemical and phenotypical characterization of transgenic tomato plants overexpressing a basic peroxidase. Physiologia Plantarum, 1999, 106, 355-362.	5.2	65
17	Characterization and in situ localization of a salt-induced tomato peroxidase mRNA. Plant Molecular Biology, 1994, 25, 105-114.	3.9	64
18	Shoot regeneration and Agrobacterium-mediated transformation of Fragaria vesca L Plant Cell Reports, 1996, 15, 642-646.	5.6	61

#	Article	IF	CITATIONS
19	The nanostructural characterization of strawberry pectins in pectate lyase or polygalacturonase silenced fruits elucidates their role in softening. Carbohydrate Polymers, 2015, 132, 134-145.	10.2	58
20	Peroxidase activity and isoenzymes in the culture medium of NaCl adapted tomato suspension cells. Plant Cell, Tissue and Organ Culture, 1996, 44, 161-167.	2.3	49
21	Structural and physiological changes in the roots of tomato plants over-expressing a basic peroxidase. Physiologia Plantarum, 2003, 118, 422-429.	5.2	47
22	The polygalacturonase		

#	Article	IF	CITATIONS
37	Changes in the water binding characteristics of the cell walls from transgenic Nicotiana tabacum leaves with enhanced levels of peroxidase activity. Physiologia Plantarum, 2004, 122, 504-512.	5.2	19
38	Water relations in culture media influence maturation of avocado somatic embryos. Journal of Plant Physiology, 2011, 168, 2028-2034.	3.5	18
39	Changes in indole-3-acetic acid, indole-3-acetic acid oxidase, and peroxidase isoenzymes in the seeds of developing peach fruits. Journal of Plant Growth Regulation, 1989, 8, 255-261.	5.1	15
40	Peroxidase and IAA oxidase activities and peroxidase isoenzymes in the pericarp of seeded and seedless "Redhaven―peach fruit. Journal of Plant Growth Regulation, 1992, 11, 1-6.	5.1	15
41	Title is missing!. Plant Cell, Tissue and Organ Culture, 2000, 62, 101-106.	2.3	14
42	Purification of an anionic isoperoxidase from peach seeds and its immunological comparison with other anionic isoperoxidases. Physiologia Plantarum, 1990, 79, 623-628.	5.2	12
43	Partial deglycosylation of an anionic isoperoxidase from peach seeds - effect on enzyme activity, stability and antigenicity. Physiologia Plantarum, 1991, 83, 144-148.	5.2	11
44	Expression of a highly basic peroxidase gene in NaCl-adapted tomato cell suspensions. FEBS Letters, 1997, 407, 357-360.	2.8	11
45	Shoot regeneration and Agrobacterium -mediated transformation of Fragaria vesca L Plant Cell Reports, 1996, 15, 642-646.	5.6	9
46	Influences of exogenous sucrose on juvenile avocado during in vitro cultivation and subsequent ex vitro acclimatization. Trees - Structure and Function, 2002, 16, 569-575.	1.9	5
47	The History and Current Status of Genetic Transformation in Berry Crops. Compendium of Plant Genomes, 2018, , 139-160.	0.5	3