Manuela Ruzzoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3218701/publications.pdf

Version: 2024-02-01

42 papers 1,379 citations

15 h-index 552369 26 g-index

47 all docs

47 docs citations

47 times ranked

1777 citing authors

#	Article	IF	CITATIONS
1	Modelling non-invasive brain stimulation in cognitive neuroscience. Neuroscience and Biobehavioral Reviews, 2013, 37, 1702-1712.	2.9	432
2	The mechanism of transcranial magnetic stimulation in cognition. Cortex, 2010, 46, 128-130.	1.1	131
3	Is Transcranial Alternating Current Stimulation Effective in Modulating Brain Oscillations?. PLoS ONE, 2013, 8, e56589.	1.1	92
4	The Neural Mechanisms of the Effects of Transcranial Magnetic Stimulation on Perception. Journal of Neurophysiology, 2010, 103, 2982-2989.	0.9	83
5	The relevance of alpha phase in human perception. Cortex, 2019, 120, 249-268.	1.1	67
6	Alpha Stimulation of the Human Parietal Cortex Attunes Tactile Perception to External Space. Current Biology, 2014, 24, 329-332.	1.8	64
7	Transcranial stimulation and cognition. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 116, 739-750.	1.0	56
8	#EEGManyLabs: Investigating the replicability of influential EEG experiments. Cortex, 2021, 144, 213-229.	1.1	52
9	Sensory memory during physiological aging indexed by mismatch negativity (MMN). Neurobiology of Aging, 2012, 33, 625.e21-625.e30.	1.5	49
10	Effects of Right Parietal Transcranial Magnetic Stimulation on Object Identification and Orientation Judgments. Journal of Cognitive Neuroscience, 2008, 20, 916-926.	1.1	42
11	Rhythms in cognition: The evidence revisited. European Journal of Neuroscience, 2022, 55, 2991-3009.	1.2	37
12	Accurate and Rapid Estimation of Phosphene Thresholds (REPT). PLoS ONE, 2011, 6, e22342.	1.1	33
13	The neural basis of the Enigma illusion: A transcranial magnetic stimulation study. Neuropsychologia, 2011, 49, 3648-3655.	0.7	27
14	The mismatch negativity as an index of cognitive decline for the early detection of Alzheimer's disease. Scientific Reports, 2016, 6, 33167.	1.6	25
15	The effect of TMS on visual motion sensitivity: an increase in neural noise or a decrease in signal strength?. Journal of Neurophysiology, 2011, 106, 138-143.	0.9	22
16	Can the occipital alphaâ€phase speed up visual detection through a realâ€time EEGâ€based brain–computer interface (BCI)?. European Journal of Neuroscience, 2022, 55, 3224-3240.	1.2	22
17	Confounders in the detection of minimal hepatic encephalopathy: a neuropsychological and quantified <scp>EEG</scp> study. Liver International, 2015, 35, 1524-1532.	1.9	19
18	The phase of preâ€stimulus brain oscillations correlates with crossâ€modal synchrony perception. European Journal of Neuroscience, 2019, 49, 150-164.	1.2	16

#	Article	IF	Citations
19	Reliability of TMS phosphene threshold estimation: Toward a standardized protocol. Brain Stimulation, 2017, 10, 609-617.	0.7	15
20	The breakdown of the Simon effect in crossâ€modal contexts: EEG evidence. European Journal of Neuroscience, 2018, 47, 832-844.	1.2	12
21	Modality-switching in the Simon task: The clash of reference frames Journal of Experimental Psychology: General, 2017, 146, 1478-1497.	1.5	11
22	Integrating when and what information in the left parietal lobe allows language rule generalization. PLoS Biology, 2020, 18, e3000895.	2.6	11
23	The phase of Theta oscillations modulates successful memory formation at encoding. Neuropsychologia, 2021, 154, 107775.	0.7	9
24	Perceptual and Physiological Consequences of Dark Adaptation: A TMS-EEG Study. Brain Topography, 2019, 32, 773-782.	0.8	8
25	Conflict monitoring and attentional adjustment during binocular rivalry. European Journal of Neuroscience, 2022, 55, 138-153.	1.2	7
26	From cognitive control to visual incongruity: Conflict detection in surrealistic images. PLoS ONE, 2020, 15, e0224053.	1.1	4
27	The influence of time prediction on modality expectancy. Seeing and Perceiving, 2012, 25, 54.	0.4	0
28	TMS entrainment of pre-stimulus oscillatory activity inÂtactile perception. Seeing and Perceiving, 2012, 25, 152.	0.4	0
29	Modulating tactile perception with rhythmic TMSÂentrainment. Multisensory Research, 2013, 26, 100.	0.6	0
30	Integrating when and what information in the left parietal lobe allows language rule generalization. , 2020, 18, e3000895.		0
31	Integrating when and what information in the left parietal lobe allows language rule generalization. , 2020, 18, e3000895.		0
32	Integrating when and what information in the left parietal lobe allows language rule generalization. , 2020, 18, e3000895.		0
33	Integrating when and what information in the left parietal lobe allows language rule generalization. , 2020, 18, e3000895.		0
34	Integrating when and what information in the left parietal lobe allows language rule generalization. , 2020, 18, e3000895.		0
35	Integrating when and what information in the left parietal lobe allows language rule generalization. , 2020, 18, e3000895.		0
36	Integrating when and what information in the left parietal lobe allows language rule generalization. , 2020, 18, e3000895.		0

#	Article	IF	CITATIONS
37	Integrating when and what information in the left parietal lobe allows language rule generalization. , 2020, 18, e3000895.		O
38	Integrating when and what information in the left parietal lobe allows language rule generalization. , 2020, 18, e3000895.		0
39	From cognitive control to visual incongruity: Conflict detection in surrealistic images., 2020, 15, e0224053.		O
40	From cognitive control to visual incongruity: Conflict detection in surrealistic images., 2020, 15, e0224053.		0
41	From cognitive control to visual incongruity: Conflict detection in surrealistic images. , 2020, 15, e0224053.		O
42	From cognitive control to visual incongruity: Conflict detection in surrealistic images., 2020, 15, e0224053.		0