Shun-ichi Matsuura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3218416/publications.pdf

Version: 2024-02-01

44 papers

809 citations

15 h-index 28 g-index

44 all docs

44 docs citations

44 times ranked 1070 citing authors

#	Article	IF	CITATIONS
1	Assemblies of two multimeric enzymes using mesoporous silica microspheres toward cascade reaction fields. Biochemical Engineering Journal, 2022, 182, 108416.	3.6	1
2	Highly Precise and Sensitive Polymerase Chain Reaction Using Mesoporous Silica-Immobilized Enzymes. ACS Applied Materials & Enzymes, 2022, 14, 29483-29490.	8.0	3
3	Efficient production of \hat{l}^3 -aminobutyric acid by glutamate decarboxylase immobilized on an amphiphilic organic-inorganic hybrid porous material. Journal of Bioscience and Bioengineering, 2021, 131, 250-255.	2.2	4
4	Fabrication of Enzyme-Loaded Cartridges Using CO2-Assisted Polymer Compression. Technologies, 2021, 9, 85.	5.1	3
5	Successful Mesoporous Silica Encapsulation of Optimally Functional EcDOS (E. coli Direct Oxygen) Tj ETQq1 1 (0.784314 r 1.6	rgBŢ /Overlo <mark>c</mark> h
6	Direct single-molecule observations of DNA unwinding by SV40 large tumor antigen under a negative DNA supercoil state. Journal of Biomolecular Structure and Dynamics, 2018, 36, 32-44.	3.5	6
7	Enzyme Immobilization in Mesoporous Silica for Enhancement of Thermostability. Journal of Nanoscience and Nanotechnology, 2018, 18, 104-109.	0.9	16
8	Structural Stability of Light-harvesting Protein LH2 Adsorbed on Mesoporous Silica Supports. Analytical Sciences, 2015, 31, 1069-1074.	1.6	8
9	Amphiphilic Organic–Inorganic Hybrid Zeotype Aluminosilicate like a Nanoporous Crystallized Langmuir–Blodgett Film. Angewandte Chemie - International Edition, 2015, 54, 7994-7998.	13.8	14
10	Direct Single-Molecule Observations of Local Denaturation of a DNA Double Helix under a Negative Supercoil State. Analytical Chemistry, 2015, 87, 3490-3497.	6.5	6
11	A New Direct Single-Molecule Observation Method for DNA Synthesis Reaction Using Fluorescent Replication Protein A. Sensors, 2014, 14, 5174-5182.	3.8	4
12	Solvothermal synthesis and characterization of a layered silicate including a large quantity of Al atom and its mesoporous derivatives. Microporous and Mesoporous Materials, 2014, 191, 38-47.	4.4	5
13	Nanoporous scaffold for DNA polymerase: pore-size optimisation of mesoporous silica for DNA amplification. RSC Advances, 2014, 4, 25920-25923.	3.6	6
14	Synthesis of amino acid using a flow-type microreactor containing enzyme–mesoporous silica microsphere composites. RSC Advances, 2014, 4, 9021-9030.	3.6	13
15	Real-time single-molecule observations of T7 Exonuclease activity in a microflow channel. Analytical Biochemistry, 2014, 457, 24-30.	2.4	4
16	Direct Observation of Fluorescently Labeled Single-stranded λDNA Molecules in a Micro-Flow Channel. Journal of Fluorescence, 2013, 23, 635-640.	2.5	6
17	An enzyme-encapsulated microreactor for efficient theanine synthesis. Chemical Communications, 2012, 48, 7058.	4.1	17
18	Preparation of mesoporous silicas using food grade emulsifiers and its application for enzyme supports. Journal of Non-Crystalline Solids, 2012, 358, 1673-1680.	3.1	4

#	Article	IF	Citations
19	Production of l-theanine using glutaminase encapsulated in carbon-coated mesoporous silica with high pH stability. Biochemical Engineering Journal, 2012, 68, 207-214.	3.6	30
20	Enzyme encapsulation using highly ordered mesoporous silica monoliths. Materials Letters, 2012, 89, 184-187.	2.6	18
21	α-Amylase immobilization capacities of mesoporous silicas with different morphologies and surface properties. Journal of Porous Materials, 2012, 19, 95-102.	2.6	22
22	Synthesis of l-theanine using enzyme/mesoporous silica conjugates under high pH conditions. Materials Letters, 2011, 65, 67-69.	2.6	15
23	Direct Observation Method of Individual Single-Stranded DNA Molecules Using Fluorescent Replication Protein A. Journal of Fluorescence, 2011, 21, 1189-1194.	2.5	8
24	Immobilization of enzyme-encapsulated nanoporous material in a microreactor and reaction analysis. Chemical Engineering Journal, 2011, 167, 744-749.	12.7	46
25	Direct visualization of hetero-enzyme co-encapsulated in mesoporous silicas. Microporous and Mesoporous Materials, 2010, 127, 61-66.	4.4	29
26	Encapsulation of fluorescent proteins in folded-sheet mesoporous materials: Effect of pore size on energy-transfer efficiency. Microporous and Mesoporous Materials, 2010, 131, 245-251.	4.4	15
27	A new DNA combing method for biochemical analysis. Analytical Biochemistry, 2010, 400, 145-147.	2.4	27
28	Enhancement in thermal stability and resistance to denaturants of lipase encapsulated in mesoporous silica with alkyltrimethylammonium (CTAB). Colloids and Surfaces B: Biointerfaces, 2010, 75, 478-482.	5.0	33
29	Detection of hetero-proteins–mesoporous silica assembly by BRET. Chemical Communications, 2010, 46, 2941.	4.1	5
30	On-chip encapsulation of lipase using mesoporous silica: A new route to enzyme microreactors. Materials Letters, 2009, 63, 2445-2448.	2.6	10
31	Hydrophobic immobilization of Candida rugosa lipase in polypropylene porous parrier applied for lipid hydrolysis. Journal of Bioscience and Bioengineering, 2009, 108, 598.	2.2	0
32	Synthesis of a Cagelike Hollow Aluminosilicate with Vermiculate Microâ€Throughâ€Holes and its Application to Shipâ€Inâ€Bottle Encapsulation of Protein. Small, 2009, 5, 67-71.	10.0	37
33	Catalase encapsulated in mesoporous silica and its performance. Biochemical Engineering Journal, 2009, 44, 167-173.	3.6	34
34	The Ensemble of Hetero-Proteins in Inorganic Nanochannels. Bioconjugate Chemistry, 2008, 19, 10-14.	3.6	15
35	DIRECT VISUALIZATION OF ENZYMES ENCAPSULATED IN MESOPOROUS MATERIALS. , 2008, , .		0
36	Activation of restriction enzyme by electrochemically released magnesium ion. Journal of Bioscience and Bioengineering, 2004, 98, 293-297.	2,2	10

#	Article	IF	CITATIONS
37	Single-molecule PCR using water-in-oil emulsion. Journal of Biotechnology, 2003, 102, 117-124.	3.8	195
38	One-End Immobilization of Individual DNA Molecules on a Functional Hydrophobic Glass Surface. Journal of Biomolecular Structure and Dynamics, 2002, 20, 429-436.	3.5	13
39	Indirect micromanipulation of single molecules in water-in-oil emulsion. Electrophoresis, 2001, 22, 289-293.	2.4	28
40	Real-time observation of a single DNA digestion by lambda exonuclease under a fluorescence microscope field. Nucleic Acids Research, 2001, 29, 79e-79.	14.5	64
41	Kinetic characterization of esterification catalyzed by Rhizopus delemar lipase in lecithin-AOT microemulsion systems. Journal of Molecular Catalysis B: Enzymatic, 1998, 4, 25-32.	1.8	29
42	Novel DNA Manipulation Based on Local Temperature Control: Transportation and Scission. , 1998 , , $415-418$.		2
43	Stretching and cutting of a single DNA molecule. , 0, , .		0
44	Control of restriction enzyme activity by local concentration of magnesium ion. , 0, , .		0