List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3218325/publications.pdf Version: 2024-02-01

HONCYING XIL

#	Article	IF	CITATIONS
1	Identification of twist-angle-dependent excitons in WS2/WSe2 heterobilayers. National Science Review, 2022, 9, .	4.6	9
2	Defects inducing anomalous exciton kinetics in monolayer WS2. Nano Research, 2022, 15, 1616-1622.	5.8	9
3	Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers. Chinese Physics B, 2022, 31, 017803.	0.7	3
4	Surface-enhanced Raman scattering beyond plasmonics. Frontiers of Physics, 2022, 17, 1.	2.4	1
5	Ultrafast dynamics of exciton–polariton in optically tailored potential landscapes at room temperature. Journal of Physics Condensed Matter, 2022, 34, 024001.	0.7	6
6	In Situ Raman Probing of Hotâ€Electron Transfer at Gold–Graphene Interfaces with Atomic Layer Accuracy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
7	Plasmon enhanced light–matter interaction of rice-like nanorods by a cube-plate nanocavity. Nanoscale Advances, 2022, 4, 1145-1150.	2.2	1
8	Remote Dual-Cavity Enhanced Second Harmonic Generation in a Hybrid Plasmonic Waveguide. Nano Letters, 2022, 22, 688-694.	4.5	13
9	Revealing the Competition between Defectâ€Trapped Exciton and Bandâ€Edge Exciton Photoluminescence in Monolayer Hexagonal WS ₂ . Advanced Optical Materials, 2022, 10, .	3.6	8
10	On-Chip Detection of Multiwavelength Surface Plasmon Polaritons Based on Plasmonic Demultiplexers. ACS Photonics, 2022, 9, 391-397.	3.2	12
11	Circular Polarization Conversion in Single Plasmonic Spherical Particles. Nano Letters, 2022, 22, 1504-1510.	4.5	2
12	Switching plasmonic nanogaps between classical and quantum regimes with supramolecular interactions. Science Advances, 2022, 8, eabj9752.	4.7	11
13	Plasmon-assisted nanophase engineering of titanium dioxide for improved performances in single-particle based sensing and photocatalysis. Nanoscale, 2022, 14, 4705-4711.	2.8	10
14	Local controllability of hot electron and thermal effects enabled by chiral plasmonic nanostructures. Nanophotonics, 2022, 11, 1195-1202.	2.9	4
15	Femtosecond Dynamics of a Polariton Bosonic Cascade at Room Temperature. Nano Letters, 2022, 22, 2023-2029.	4.5	7
16	Fundamentals of Surface Plasmons. , 2022, , 1-30.		0
17	Beyond the Phase Segregation: Probing the Irreversible Phase Reconstruction of Mixedâ€Halide Perovskites. Advanced Science, 2022, 9, e2103948.	5.6	17
18	Ultraflexible Photothermal Superhydrophobic Coating with Multifunctional Applications Based on Plasmonic TiN Nanoparticles. Advanced Optical Materials, 2022, 10, .	3.6	18

#	Article	IF	CITATIONS
19	Unified Scattering and Photoluminescence Spectra for Strong Plasmon-Exciton Coupling. Physical Review Letters, 2022, 128, 167402.	2.9	22
20	Cost-Effective Calculation of Collective Electronic Excitations in Graphite Intercalated Compounds. Nanomaterials, 2022, 12, 1746.	1.9	1
21	Merging bound states in the continuum by harnessing higher-order topological charges. Light: Science and Applications, 2022, 11, .	7.7	38
22	Understanding the lineshape of surface-enhanced infrared absorption spectra. National Science Review, 2021, 8, nwaa240.	4.6	2
23	Emerging Lightâ€Emitting Materials for Photonic Integration. Advanced Materials, 2021, 33, e2003733.	11.1	25
24	Nanolayered Tamm Plasmon-Based Multicolor Hot Electron Photodetection for O- and C-Band Telecommunication. ACS Applied Electronic Materials, 2021, 3, 639-650.	2.0	12
25	A high speed electrically switching reflective structural color display with large color gamut. Nanoscale, 2021, 13, 1164-1171.	2.8	8
26	Rotational Doppler cooling and heating. Science Advances, 2021, 7, .	4.7	8
27	Highâ€Q Plasmonic Resonances: Fundamentals and Applications. Advanced Optical Materials, 2021, 9, 2001520.	3.6	98
28	An enhanced plasmonic photothermal effect for crystal transformation by a heat-trapping structure. Nanoscale, 2021, 13, 4585-4591.	2.8	10
29	Controlling the immobilization process of an optically enhanced protein microarray for highly reproducible immunoassay. Nanoscale, 2021, 13, 4269-4277.	2.8	1
30	Efficient single-photon emission from a nanowire quantum dot coupled to a plasmonic nanoantenna. Journal of Lightwave Technology, 2021, , 1-1.	2.7	6
31	Superradiative plasmonic nanoantenna biosensors enable sensitive immunoassay using the naked eye. Nanoscale, 2021, 13, 2429-2435.	2.8	9
32	Ultrathin, broadband, omnidirectional, and polarization-independent infrared absorber using all-dielectric refractory materials. Nanophotonics, 2021, 10, 1683-1690.	2.9	16
33	Merging Bound States in the Continuum at Off-High Symmetry Points. Physical Review Letters, 2021, 126, 117402.	2.9	107
34	Multiplasmons-Pumped Excited-State Absorption and Energy Transfer Upconversion of Rare-Earth-Doped Luminescence beyond the Diffraction Limit. ACS Photonics, 2021, 8, 1335-1343.	3.2	15
35	Plasmonic hot-electron photodetection with quasi-bound states in the continuum and guided resonances. Nanophotonics, 2021, 10, 1911-1921.	2.9	19
36	Coherent Excitation and Control of Plasmons on Gold Using Two-Dimensional Transition Metal Dichalcogenides. ACS Photonics, 2021, 8, 1607-1615.	3.2	6

#	Article	IF	CITATIONS
37	Self-Constructed Multiple Plasmonic Hotspots on an Individual Fractal to Amplify Broadband Hot Electron Generation. ACS Nano, 2021, 15, 10553-10564.	7.3	37
38	Switchable Electrically Driven Optical Antenna Based on Ultrathin Amorphous Silica. Advanced Optical Materials, 2021, 9, 2100191.	3.6	5
39	Engineering plasmonic hot carrier dynamics toward efficient photodetection. Applied Physics Reviews, 2021, 8, .	5.5	47
40	Single-shot imaging of surface molecular ionization in nanosystems. Nanophotonics, 2021, 10, 2651-2660.	2.9	6
41	Unified treatment of scattering, absorption, and luminescence spectra from a plasmon–exciton hybrid by temporal coupled-mode theory. Journal of Chemical Physics, 2021, 155, 074104.	1.2	6
42	Plasmon–Exciton Interactions: Spontaneous Emission and Strong Coupling. Advanced Functional Materials, 2021, 31, 2100889.	7.8	44
43	Nonlinear nanophotonics based on surface plasmon polaritons. Applied Physics Letters, 2021, 119, .	1.5	17
44	Chiral Optofluidics with a Plasmonic Metasurface Using the Photothermal Effect. ACS Nano, 2021, 15, 16357-16367.	7.3	23
45	Plasmon-Directed On-Wire Growth of Branched Silver Nanowires with Chiroptic Activity. ACS Nano, 2021, 15, 16404-16410.	7.3	8
46	A top–down fabricated gold nanostrip on a silicon-on-insulator wafer: a promising building block towards ultra-compact optical devices. Nanoscale, 2021, 13, 1904-1914.	2.8	1
47	Strong plasmon–exciton coupling in transition metal dichalcogenides and plasmonic nanostructures. Nanoscale, 2021, 13, 4408-4419.	2.8	44
48	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
49	Reduced loss of plasmon propagation in a Ag nanowire on Si substrate. Nano Energy, 2020, 68, 104322.	8.2	8
50	Anomalous Thermodiffusion of Electrons in Graphene. Physical Review Letters, 2020, 125, 176802.	2.9	4
51	Efficient Frequency Mixing of Guided Surface Waves by Atomically Thin Nonlinear Crystals. Nano Letters, 2020, 20, 7956-7963.	4.5	17
52	Giant photothermoelectric effect in silicon nanoribbon photodetectors. Light: Science and Applications, 2020, 9, 120.	7.7	24
53	Direct visualization of phase-matched efficient second harmonic and broadband sum frequency generation in hybrid plasmonic nanostructures. Light: Science and Applications, 2020, 9, 180.	7.7	24
54	Continuous Tuning of Au–Cu ₂ O Janus Nanostructures for Efficient Charge Separation. Angewandte Chemie - International Edition, 2020, 59, 22246-22251.	7.2	69

#	Article	IF	CITATIONS
55	Precursor-Mediated Linear- and Branched-Polytypism Control in Cu _α Zn _β Sn <sub)γ< sub="">Se_β Colloidal Nanocrystals Using a Dual-Injection Method. Chemistry of Materials, 2020, 32, 7254-7262.</sub)γ<>	3.2	7
56	Malus-metasurface-assisted polarization multiplexing. Light: Science and Applications, 2020, 9, 101.	7.7	176
57	Enabling and Controlling Negative Photoconductance of FePS ₃ Nanosheets by Hot Carrier Trapping. Advanced Optical Materials, 2020, 8, 2000201.	3.6	19
58	In Situ Raman Monitoring and Manipulating of Interfacial Hydrogen Spillover by Precise Fabrication of Au/TiO ₂ /Pt Sandwich Structures. Angewandte Chemie - International Edition, 2020, 59, 10343-10347.	7.2	70
59	In Situ Raman Monitoring and Manipulating of Interfacial Hydrogen Spillover by Precise Fabrication of Au/TiO 2 /Pt Sandwich Structures. Angewandte Chemie, 2020, 132, 10429-10433.	1.6	44
60	Selectively Depopulating Valley-Polarized Excitons in Monolayer MoS ₂ by Local Chirality in Single Plasmonic Nanocavity. Nano Letters, 2020, 20, 4953-4959.	4.5	45
61	Band structure, effective mass, and carrier mobility of few-layer <i>h</i> -AlN under layer and strain engineering. APL Materials, 2020, 8, .	2.2	28
62	Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy. Nano Letters, 2020, 20, 3499-3505.	4.5	27
63	Azo-Dimerization Mechanisms of <i>p</i> -Aminothiophenol and <i>p</i> -Nitrothiophenol Molecules on Plasmonic Metal Surfaces Revealed by Tip-/Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 11586-11594.	1.5	16
64	Temperature-dependent dark-field scattering of single plasmonic nanocavity. Nanophotonics, 2020, 9, 3347-3356.	2.9	13
65	Self-suspended rare-earth doped up-conversion luminescent waveguide: propagating and directional radiation. Opto-Electronic Advances, 2020, 3, 190045-190045.	6.4	8
66	Magnetically activated rotational vacuum friction. Physical Review A, 2019, 99, .	1.0	14
67	Plasmon-Driven Catalysis on Molecules and Nanomaterials. Accounts of Chemical Research, 2019, 52, 2506-2515.	7.6	197
68	Circular Dichroism in Rotating Particles. Physical Review Letters, 2019, 123, 066803.	2.9	12
69	Routing a Chiral Raman Signal Based on Spin-Orbit Interaction of Light. Physical Review Letters, 2019, 123, 183903.	2.9	45
70	Simultaneous Surface-Enhanced Resonant Raman and Fluorescence Spectroscopy of Monolayer MoSe ₂ : Determination of Ultrafast Decay Rates in Nanometer Dimension. Nano Letters, 2019, 19, 6284-6291.	4.5	71
71	Ultrafast Modulation of Exciton–Plasmon Coupling in a Monolayer WS ₂ –Ag Nanodisk Hybrid System. ACS Photonics, 2019, 6, 2832-2840.	3.2	52
72	Silver nano-needles: focused optical field induced solution synthesis and application in remote-excitation nanofocusing SERS. Nanoscale, 2019, 11, 2153-2161.	2.8	16

#	Article	IF	CITATIONS
73	Efficient Second Harmonic Generation in a Hybrid Plasmonic Waveguide by Mode Interactions. Nano Letters, 2019, 19, 3838-3845.	4.5	47
74	Photothermal Modulation of Propagating Surface Plasmons on Silver Nanowires. ACS Photonics, 2019, 6, 2133-2140.	3.2	28
75	Analytical analysis of spectral sensitivity of plasmon resonances in a nanocavity. Nanoscale, 2019, 11, 10977-10983.	2.8	15
76	Real-time Raman detection by the cavity mode enhanced Raman scattering. Nano Research, 2019, 12, 1643-1649.	5.8	21
77	Kagome bands disguised in a coloring-triangle lattice. Physical Review B, 2019, 99, .	1.1	42
78	Topological band evolution between Lieb and kagome lattices. Physical Review B, 2019, 99, .	1.1	66
79	Closely packed metallic nanocuboid dimer allowing plasmomechanical strong coupling. Physical Review A, 2019, 99, .	1.0	10
80	Electrically Driven Highly Tunable Cavity Plasmons. ACS Photonics, 2019, 6, 823-829.	3.2	26
81	Steering Second-Harmonic Beams in Nanophotonic Waveguides by Gratings. ACS Photonics, 2019, 6, 3142-3149.	3.2	7
82	Light-controlled nanoswitches: from fabrication to photoelectric switching. Nanoscale, 2019, 11, 18496-18500.	2.8	8
83	Electrically Driven Optical Antennas Based on Template Dielectrophoretic Trapping. ACS Nano, 2019, 13, 14041-14047.	7.3	19
84	Probing of sub-picometer vertical differential resolutions using cavity plasmons. Nature Communications, 2018, 9, 801.	5.8	89
85	Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire. Nano Letters, 2018, 18, 2009-2015.	4.5	26
86	Plasmon Waveguiding in Nanowires. Chemical Reviews, 2018, 118, 2882-2926.	23.0	179
87	Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications. Chinese Physics B, 2018, 27, 107403.	0.7	34
88	Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime. ACS Nano, 2018, 12, 10393-10402.	7.3	151
89	Plasmon-directed polymerization: Regulating polymer growth with light. Nano Research, 2018, 11, 6384-6390.	5.8	47
90	Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe. Light: Science and Applications, 2018, 7, 56.	7.7	94

#	Article	IF	CITATIONS
91	Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates. Nanoscale, 2018, 10, 11923-11929.	2.8	24
92	Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates. , 2018, , \cdot		0
93	The nonmonotonous shift of quantum plasmon resonance and plasmon-enhanced photocatalytic activity of gold nanoparticles. Nanoscale, 2017, 9, 3188-3195.	2.8	18
94	Hotâ€Electronâ€Mediated Photochemical Reactions: Principles, Recent Advances, and Challenges. Advanced Optical Materials, 2017, 5, 1700004.	3.6	142
95	Manipulating Coherent Plasmon–Exciton Interaction in a Single Silver Nanorod on Monolayer WSe ₂ . Nano Letters, 2017, 17, 3809-3814.	4.5	270
96	Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers. Scientific Reports, 2017, 7, 43884.	1.6	22
97	Hotâ€Electronâ€Mediated Reactions: Hotâ€Electronâ€Mediated Photochemical Reactions: Principles, Recent Advances, and Challenges (Advanced Optical Materials 15/2017). Advanced Optical Materials, 2017, 5, .	3.6	4
98	Transversely Divergent Second Harmonic Generation by Surface Plasmon Polaritons on Single Metallic Nanowires. Nano Letters, 2017, 17, 7803-7808.	4.5	63
99	Topologically protected Dirac plasmons in a graphene superlattice. Nature Communications, 2017, 8, 1243.	5.8	66
100	Lithographically Defined, Room Temperature Low Threshold Subwavelength Red-Emitting Hybrid Plasmonic Lasers. Nano Letters, 2016, 16, 7822-7828.	4.5	23
101	Strong Spin-Orbit Interaction of Light in Plasmonic Nanostructures and Nanocircuits. Physical Review Letters, 2016, 117, 166803.	2.9	99
102	Nanoantenna effect of surface-enhanced Raman scattering: managing light with plasmons at the nanometer scale. Advances in Physics: X, 2016, 1, 492-521.	1.5	10
103	Direction-resolved radiation from polarization-controlled surface plasmon modes on silver nanowire antennas. Nanoscale, 2016, 8, 20118-20124.	2.8	25
104	Guided transport of nanoparticles by plasmonic nanowires. Nanoscale, 2016, 8, 19195-19199.	2.8	20
105	Tunable dark plasmons in a metallic nanocube dimer: toward ultimate sensitivity nanoplasmonic sensors. Nanoscale, 2016, 8, 13722-13729.	2.8	54
106	Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics. Nature Communications, 2015, 6, 7132.	5.8	250
107	Anomalously Weak Scattering in Metal-Semiconductor Multilayer Hyperbolic Metamaterials. Physical Review X, 2015, 5, .	2.8	21
108	Strong tunability of cooperative energy transfer in Mn2+-doped (Yb3+, Er3+)/NaYF4 nanocrystals by coupling with silver nanorod array. Nano Research, 2015, 8, 2970-2977.	5.8	21

#	Article	IF	CITATIONS
109	Nanoscale Imaging of Local Few-Femtosecond Near-Field Dynamics within a Single Plasmonic Nanoantenna. Nano Letters, 2015, 15, 6601-6608.	4.5	81
110	Routing of surface plasmons in silver nanowire networks controlled by polarization and coating. Nanoscale, 2015, 7, 19053-19059.	2.8	39
111	Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths. Journal of Applied Physics, 2015, 117, .	1.1	5
112	Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire. Nano Letters, 2015, 15, 8181-8187.	4.5	49
113	Directionally-Controlled Periodic Collimated Beams of Surface Plasmon Polaritons on Metal Film in Ag Nanowire/Al ₂ O ₃ /Ag Film Composite Structure. Nano Letters, 2015, 15, 560-564.	4.5	37
114	Plasmonic Gradient Effects on High Vacuum Tipâ€Enhanced Raman Spectroscopy. Advanced Optical Materials, 2014, 2, 74-80.	3.6	63
115	Tip-Enhanced Raman Spectroscopy: Plasmon-Driven Selective Reductions Revealed by Tip-Enhanced Raman Spectroscopy (Adv. Mater. Interfaces 5/2014). Advanced Materials Interfaces, 2014, 1, n/a-n/a.	1.9	1
116	Controlling the radiation direction of propagating surface plasmons on silver nanowires. Laser and Photonics Reviews, 2014, 8, 596-601.	4.4	38
117	Hot electron photoemission from plasmonic nanoparticles: Role of transient absorption in surface mechanism. , 2014, , .		0
118	Plasmonâ€Driven Selective Reductions Revealed by Tipâ€Enhanced Raman Spectroscopy. Advanced Materials Interfaces, 2014, 1, 1300125.	1.9	44
119	Recent Advances in Plasmonic Sensors. Sensors, 2014, 14, 7959-7973.	2.1	182
120	Resolving Single Plasmons Generated by Multiquantum-Emitters on a Silver Nanowire. Nano Letters, 2014, 14, 3358-3363.	4.5	64
121	Single Nanoparticle Couplers for Plasmonic Waveguides. Small, 2014, 10, 4264-4269.	5.2	25
122	Visualized method of chemical enhancement mechanism on SERS and TERS. Journal of Raman Spectroscopy, 2014, 45, 533-540.	1.2	107
123	Mode Conversion of Propagating Surface Plasmons in Nanophotonic Networks Induced by Structural Symmetry Breaking. Scientific Reports, 2014, 4, .	1.6	45
124	Reduced linewidth multipolar plasmon resonances in metal nanorods and related applications. Nanoscale, 2013, 5, 6985.	2.8	78
125	Tip-Enhanced Ultrasensitive Stokes and Anti-Stokes Raman Spectroscopy in High Vacuum. Plasmonics, 2013, 8, 523-527.	1.8	15
126	Surface enhanced fluorescence and Raman scattering by gold nanoparticle dimers and trimers. Journal of Applied Physics, 2013, 113, .	1.1	66

#	Article	IF	CITATIONS
127	Tipâ€Enhanced Resonance Couplings Revealed by High Vacuum Tipâ€Enhanced Raman Spectroscopy. Advanced Optical Materials, 2013, 1, 449-455.	3.6	39
128	Asymmetric Silver "Nanocarrot―Structures: Solution Synthesis and Their Asymmetric Plasmonic Resonances. Journal of the American Chemical Society, 2013, 135, 9616-9619.	6.6	43
129	New progress of plasmonics in complex metal nanostructures. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2327-2336.	2.0	9
130	Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations. Optics Express, 2013, 21, 9556.	1.7	88
131	Plasmonic Amplification with Ultra-High Optical Gain at Room Temperature. Scientific Reports, 2013, 3, 1967.	1.6	55
132	Secondary electron imaging of nanostructures using Extreme Ultraâ€Violet attosecond pulse trains and Infraâ€Red femtosecond pulses. Annalen Der Physik, 2013, 525, 162-170.	0.9	14
133	Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires. Light: Science and Applications, 2013, 2, e112-e112.	7.7	185
134	Highly tunable propagating surface plasmons on supported silver nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4494-4499.	3.3	117
135	In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Scientific Reports, 2012, 2, 647.	1.6	254
136	Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits. Nanophotonics, 2012, 1, 155-169.	2.9	111
137	Controlling surface plasmon interference in branched silver nanowire structures. Nanoscale, 2012, 4, 7149.	2.8	26
138	Ascertaining genuine SERS spectra of p-aminothiophenol. RSC Advances, 2012, 2, 8289.	1.7	33
139	Enormous Surfaceâ€Enhanced Raman Scattering from Dimers of Flowerâ€Like Silver Mesoparticles. Small, 2012, 8, 3400-3405.	5.2	30
140	Optimizing Substrate-Mediated Plasmon Coupling toward High-Performance Plasmonic Nanowire Waveguides. ACS Nano, 2012, 6, 8128-8135.	7.3	116
141	Silver Nanorice Structures: Oriented Attachment-Dominated Growth, High Environmental Sensitivity, and Real-Space Visualization of Multipolar Resonances. Chemistry of Materials, 2012, 24, 2339-2346.	3.2	71
142	Plasmonic Properties of Gold Nanoparticles Separated from a Gold Mirror by an Ultrathin Oxide. Nano Letters, 2012, 12, 2088-2094.	4.5	256
143	Relationship between Length and Surface-Enhanced Raman Spectroscopy Signal Strength in Metal Nanoparticle Chains: Ideal Models versus Nanofabrication. Journal of Nanotechnology, 2012, 2012, 1-7.	1.5	7
144	Polarizationâ€Dependent Study on Propagating Surface Plasmons in Silver Nanowires Launched by a Nearâ€Field Scanning Optical Fiber Tip. Small, 2012, 8, 2641-2646.	5.2	18

#	Article	IF	CITATIONS
145	A Novel Application of Plasmonics: Plasmonâ€Driven Surfaceâ€Catalyzed Reactions. Small, 2012, 8, 2777-2786.	5.2	409
146	Selective reduction of nitroaromatic compounds on silver nanoparticles by visible light. Journal of Raman Spectroscopy, 2012, 43, 1024-1028.	1.2	7
147	Surface enhanced fluorescence by porous alumina with nanohole arrays. Science China: Physics, Mechanics and Astronomy, 2012, 55, 767-771.	2.0	14
148	Thermal detection of surface plasmons on gold nanohole arrays. Science Bulletin, 2012, 57, 68-71.	1.7	3
149	Substrate-, Wavelength-, and Time-Dependent Plasmon-Assisted Surface Catalysis Reaction of 4-Nitrobenzenethiol Dimerizing to <i>p</i> , <i>p</i> ′-Dimercaptoazobenzene on Au, Ag, and Cu Films. Langmuir, 2011, 27, 10677-10682.	1.6	223
150	Light Propagation in Curved Silver Nanowire Plasmonic Waveguides. Nano Letters, 2011, 11, 1603-1608.	4.5	221
151	Acid-directed synthesis of SERS-active hierarchical assemblies of silver nanostructures. Journal of Materials Chemistry, 2011, 21, 2495-2501.	6.7	106
152	The pH-Controlled Plasmon-Assisted Surface Photocatalysis Reaction of 4-Aminothiophenol to <i>p</i> , <i>p</i> ′-Dimercaptoazobenzene on Au, Ag, and Cu Colloids. Journal of Physical Chemistry C, 2011, 115, 9629-9636.	1.5	149
153	Cascaded logic gates in nanophotonic plasmon networks. Nature Communications, 2011, 2, 387.	5.8	412
154	Quantum Dot-Based Local Field Imaging Reveals Plasmon-Based Interferometric Logic in Silver Nanowire Networks. Nano Letters, 2011, 11, 471-475.	4.5	267
155	Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed. Nano Letters, 2011, 11, 1657-1663.	4.5	649
156	Chiral Surface Plasmon Polaritons on Metallic Nanowires. Physical Review Letters, 2011, 107, 096801.	2.9	225
157	Unidirectional Broadband Light Emission from Supported Plasmonic Nanowires. Nano Letters, 2011, 11, 706-711.	4.5	205
158	Remote Excitation Polarization-Dependent Surface Photochemical Reaction by Plasmonic Waveguide. Plasmonics, 2011, 6, 681-687.	1.8	45
159	Coherent Modulation of Propagating Plasmons in Silverâ€Nanowireâ€Based Structures. Small, 2011, 7, 593-596.	5.2	74
160	Is 4â€nitrobenzenethiol converted to <i>p</i> , <i>p</i> ′â€dimercaptoazobenzene or 4â€aminothiophenol by surface photochemistry reaction?. Journal of Raman Spectroscopy, 2011, 42, 1205-1206.	1.2	119
161	Ultrasonic-Assisted Synthesis of Au Nanobelts and Nanowires. Journal of Nanoscience and Nanotechnology, 2010, 10, 7515-7518.	0.9	6
162	Correlation between Incident and Emission Polarization in Nanowire Surface Plasmon Waveguides. Nano Letters, 2010, 10, 1831-1835.	4.5	144

#	Article	IF	CITATIONS
163	Controlled Synthesis of Uniform Silver Nanospheres. Journal of Physical Chemistry C, 2010, 114, 7427-7431.	1.5	116
164	Surface-enhanced Raman scattering on dual-layer metallic grating structures. Science Bulletin, 2010, 55, 2643-2648.	1.7	9
165	FDTD for plasmonics: Applications in enhanced Raman spectroscopy. Science Bulletin, 2010, 55, 2635-2642.	1.7	61
166	Near-field coupling and SERS effects of palladium nanoparticle dimers. Science Bulletin, 2010, 55, 2930-2936.	1.7	6
167	Frontiers of plasmonics. Science Bulletin, 2010, 55, 2599-2599.	1.7	2
168	Experimental and theoretical evidence for the chemical mechanism in SERRS of rhodamine 6G adsorbed on colloidal silver excited at 1064 nm. Journal of Raman Spectroscopy, 2010, 41, 719-720.	1.2	10
169	Coloring fluorescence emission with silver nanowires. Applied Physics Letters, 2010, 96, .	1.5	50
170	Ascertaining p, pÊ ¹ -dimercaptoazobenzene Produced from p-aminothiophenol by Selective Catalytic Coupling Reaction on Silver Nanoparticles. , 2010, , .		3
171	Nanoantenna Effect Of SERS: Managing Light With Plasmons In The Nanometer Scale. , 2010, , .		0
172	Ascertaining <i>p</i> , <i>p</i> ′-Dimercaptoazobenzene Produced from <i>p</i> -Aminothiophenol by Selective Catalytic Coupling Reaction on Silver Nanoparticles. Langmuir, 2010, 26, 7737-7746.	1.6	343
173	Effect of a proximal substrate on plasmon propagation in silver nanowires. Physical Review B, 2010, 82,	1.1	67
174	Branched Silver Nanowires as Controllable Plasmon Routers. Nano Letters, 2010, 10, 1950-1954.	4.5	264
175	Highly Surfaceâ€roughened "Flowerâ€ŀike―Silver Nanoparticles for Extremely Sensitive Substrates of Surfaceâ€enhanced Raman Scattering. Advanced Materials, 2009, 21, 4614-4618.	11.1	361
176	Direct visual evidence for the chemical mechanism of surfaceâ€enhanced resonance Raman scattering via charge transfer. Journal of Raman Spectroscopy, 2009, 40, 137-143.	1.2	79
177	Direct visual evidence for the chemical mechanism of surfaceâ€enhanced resonance Raman scattering via charge transfer: (II) Bindingâ€site and quantumâ€size effects. Journal of Raman Spectroscopy, 2009, 40, 1172-1177.	1.2	28
178	Direct visual evidence for chemical mechanisms of SERRS via charge transfer in Au ₂₀ –pyrazine–Au ₂₀ junction. Journal of Raman Spectroscopy, 2009, 40, 1942-1948.	1.2	21
179	A highâ€throughput method for controlled hotâ€spot fabrication in SERSâ€active gold nanoparticle dimer arrays. Journal of Raman Spectroscopy, 2009, 40, 2171-2175.	1.2	91
180	Electromagnetic field enhancement in TERS configurations. Journal of Raman Spectroscopy, 2009, 40, 1343-1348.	1.2	187

#	Article	IF	CITATIONS
181	Directional Light Emission from Propagating Surface Plasmons of Silver Nanowires. Nano Letters, 2009, 9, 4383-4386.	4.5	139
182	Remote-Excitation Surface-Enhanced Raman Scattering Using Propagating Ag Nanowire Plasmons. Nano Letters, 2009, 9, 2049-2053.	4.5	209
183	Propagating Surface Plasmon Induced Photon Emission from Quantum Dots. Nano Letters, 2009, 9, 4168-4171.	4.5	181
184	Surfactant-Promoted Reductive Synthesis of Shape-Controlled Gold Nanostructures. Crystal Growth and Design, 2009, 9, 858-862.	1.4	59
185	Chemical mechanism of surfaceâ€enhanced resonance Raman scattering via charge transfer in pyridine–Ag ₂ complex. Journal of Raman Spectroscopy, 2008, 39, 402-408.	1.2	77
186	Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticleâ^'Nanowire Systems. Nano Letters, 2008, 8, 2497-2502.	4.5	268
187	Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam. Physical Review B, 2008, 77, .	1.1	44
188	Tip-enhanced Raman scattering of p-thiocresol molecules on individual gold nanoparticles. Applied Physics Letters, 2008, 92, 093110.	1.5	35
189	Tunable surface plasma resonance frequency in Ag core/Au shell nanoparticles system prepared by laser ablation. Applied Physics Letters, 2008, 92, .	1.5	62
190	Surface-Enhanced Raman Spectroscopy and Nanogeometry:  The Plasmonic Origin of SERS. Journal of Physical Chemistry C, 2007, 111, 17985-17988.	1.5	248
191	Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy. Journal of Raman Spectroscopy, 2005, 36, 510-514.	1.2	79
192	Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Physical Review B, 2005, 72, .	1.1	274
193	Unified Treatment of Fluorescence and Raman Scattering Processes near Metal Surfaces. Physical Review Letters, 2004, 93, 243002.	2.9	191
194	Calculation of the near field of aggregates of arbitrary spheres. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2004, 21, 804.	0.8	28
195	Polarization-Dependent Surface-Enhanced Raman Spectroscopy of Isolated Silver Nanoaggregates. ChemPhysChem, 2003, 4, 1001-1005.	1.0	170
196	Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates. Physical Review Letters, 2002, 89, 246802.	2.9	456
197	Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Physical Review E, 2000, 62, 4318-4324.	0.8	1,484
198	Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Physical Review Letters, 1999, 83, 4357-4360.	2.9	2,270

#	Article	IF	CITATIONS
199	Band alignment and interlayer hybridization in monolayer organic/WSe2 heterojunction. Nano Research, 0, , 1.	5.8	10
200	Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. , 0, .		1
201	Revealing the Photothermal Behavior of Plasmonic Gap Modes: Toward Thermostable Nanocavities. Laser and Photonics Reviews, 0, , 2100564.	4.4	2