## Yifa Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3218233/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                             | lF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Flexible Solid-State Supercapacitor Based on a Metal–Organic Framework Interwoven by<br>Electrochemically-Deposited PANI. Journal of the American Chemical Society, 2015, 137, 4920-4923.                                                           | 6.6  | 832       |
| 2  | Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S<br>batteries. Energy and Environmental Science, 2014, 7, 2715.                                                                                        | 15.6 | 434       |
| 3  | Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nature Communications, 2018, 9, 4466.                                                                            | 5.8  | 342       |
| 4  | Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nature Communications, 2020, 11, 497.                                                                         | 5.8  | 280       |
| 5  | Rollâ€ŧoâ€Roll Production of Metalâ€Organic Framework Coatings for Particulate Matter Removal.<br>Advanced Materials, 2017, 29, 1606221.                                                                                                            | 11.1 | 252       |
| 6  | Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion. Nature Communications, 2019, 10, 767.                                                                     | 5.8  | 247       |
| 7  | Photoinduced Postsynthetic Polymerization of a Metal–Organic Framework toward a Flexible<br>Standâ€Alone Membrane. Angewandte Chemie - International Edition, 2015, 54, 4259-4263.                                                                  | 7.2  | 235       |
| 8  | A Solventâ€Free Hotâ€Pressing Method for Preparing Metal–Organicâ€Framework Coatings. Angewandte<br>Chemie - International Edition, 2016, 55, 3419-3423.                                                                                            | 7.2  | 201       |
| 9  | Shaping of Metal–Organic Frameworks: From Fluid to Shaped Bodies and Robust Foams. Journal of the<br>American Chemical Society, 2016, 138, 10810-10813.                                                                                             | 6.6  | 178       |
| 10 | Covalent Organic Framework Based Functional Materials: Important Catalysts for Efficient<br>CO <sub>2</sub> Utilization. Angewandte Chemie - International Edition, 2022, 61, .                                                                     | 7.2  | 128       |
| 11 | Metal–organic framework-based foams for efficient microplastics removal. Journal of Materials<br>Chemistry A, 2020, 8, 14644-14652.                                                                                                                 | 5.2  | 125       |
| 12 | In Situ Growth of MOFs on the Surface of Si Nanoparticles for Highly Efficient Lithium Storage:<br>Si@MOF Nanocomposites as Anode Materials for Lithium-Ion Batteries. ACS Applied Materials &<br>Interfaces, 2015, 7, 2178-2182.                   | 4.0  | 124       |
| 13 | Zn-BTC MOFs with active metal sites synthesized via a structure-directing approach for highly efficient carbon conversion. Chemical Communications, 2014, 50, 2624-2627.                                                                            | 2.2  | 118       |
| 14 | Water Purification: Adsorption over Metalâ€Organic Frameworks. Chinese Journal of Chemistry, 2016,<br>34, 175-185.                                                                                                                                  | 2.6  | 116       |
| 15 | Metalâ€Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low<br>Electrostatic Sensitivity and Excellent Initiation Ability. Advanced Materials, 2016, 28, 5837-5843.                                              | 11.1 | 108       |
| 16 | Facile Fabrication of Multifunctional Metal–Organic Framework Hollow Tubes To Trap Pollutants.<br>Journal of the American Chemical Society, 2017, 139, 16482-16485.                                                                                 | 6.6  | 96        |
| 17 | Implanting Numerous Hydrogenâ€Bonding Networks in a Cuâ€Porphyrinâ€Based Nanosheet to Boost<br>CH <sub>4</sub> Selectivity in Neutralâ€Media CO <sub>2</sub> Electroreduction. Angewandte Chemie -<br>International Edition, 2021, 60, 21952-21958. | 7.2  | 96        |
| 18 | Metallocene implanted metalloporphyrin organic framework for highly selective CO2<br>electroreduction. Nano Energy, 2020, 67, 104233.                                                                                                               | 8.2  | 93        |

YIFA CHEN

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid–gas mode. Coordination Chemistry Reviews, 2021, 438, 213906.                                                                             | 9.5  | 93        |
| 20 | Coordination polymer-based conductive materials: ionic conductivity <i>vs.</i> electronic conductivity. Journal of Materials Chemistry A, 2019, 7, 24059-24091.                                                                         | 5.2  | 90        |
| 21 | Imparting CO <sub>2</sub> Electroreduction Auxiliary for Integrated Morphology Tuning and<br>Performance Boosting in a Porphyrinâ€based Covalent Organic Framework. Angewandte Chemie -<br>International Edition, 2022, 61, e202114648. | 7.2  | 78        |
| 22 | Stepped Channels Integrated Lithium–Sulfur Separator via Photoinduced Multidimensional<br>Fabrication of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60,<br>10147-10154.                                 | 7.2  | 74        |
| 23 | Single Metal Site and Versatile Transfer Channel Merged into Covalent Organic Frameworks Facilitate<br>High-Performance Li-CO <sub>2</sub> Batteries. ACS Central Science, 2021, 7, 175-182.                                            | 5.3  | 69        |
| 24 | Porphyrinâ€Based COF 2D Materials: Variable Modification of Sensing Performances by<br>Postâ€Metallization. Angewandte Chemie - International Edition, 2022, 61, .                                                                      | 7.2  | 63        |
| 25 | Controllable Synthesis of COFsâ€Based Multicomponent Nanocomposites from Coreâ€5hell to Yolkâ€5hell<br>and Hollowâ€5phere Structure for Artificial Photosynthesis. Advanced Materials, 2021, 33, e2105002.                              | 11.1 | 60        |
| 26 | Facile fabrication of magnetically recyclable metal–organic framework nanocomposites for highly<br>efficient and selective catalytic oxidation of benzylic C–H bonds. Chemical Communications, 2014, 50,<br>8374-8377.                  | 2.2  | 58        |
| 27 | Chloroplast-like porous bismuth-based core–shell structure for high energy efficiency CO2<br>electroreduction. Science Bulletin, 2020, 65, 1635-1642.                                                                                   | 4.3  | 52        |
| 28 | Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Liâ^'S Batteries.<br>Angewandte Chemie - International Edition, 2022, 61, .                                                                           | 7.2  | 52        |
| 29 | Efficient Charge Migration in Chemically-Bonded Prussian Blue Analogue/CdS with Beaded Structure for Photocatalytic H <sub>2</sub> Evolution. Jacs Au, 2021, 1, 212-220.                                                                | 3.6  | 47        |
| 30 | Implanting Polypyrrole in Metal-Porphyrin MOFs: Enhanced Electrocatalytic Performance for CO <sub>2</sub> RR. ACS Applied Materials & Interfaces, 2021, 13, 54959-54966.                                                                | 4.0  | 45        |
| 31 | Solid-phase hot-pressing synthesis of POMOFs on carbon cloth and derived phosphides for all pH value hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 21969-21977.                                                        | 5.2  | 43        |
| 32 | Self-assembly of anthraquinone covalent organic frameworks as 1D superstructures for highly efficient CO2 electroreduction to CH4. Science Bulletin, 2021, 66, 1659-1659.                                                               | 4.3  | 43        |
| 33 | Metalâ€Organic Frameworks Derived Porous Carbons: Syntheses, Porosity and Gas Sorption Properties.<br>Chinese Journal of Chemistry, 2016, 34, 157-174.                                                                                  | 2.6  | 42        |
| 34 | Defect engineering of highly stable lanthanide metal–organic frameworks by particle modulation for<br>coating catalysis. Journal of Materials Chemistry A, 2018, 6, 342-348.                                                            | 5.2  | 39        |
| 35 | Polyoxovanadate-polymer hybrid electrolyte in solid state batteries. Energy Storage Materials, 2020, 29, 172-181.                                                                                                                       | 9.5  | 39        |
| 36 | Rapid Production of Metal–Organic Frameworks Based Separators in Industrial‣evel Efficiency.<br>Advanced Science, 2020, 7, 2002190.                                                                                                     | 5.6  | 34        |

YIFA CHEN

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Polyoxometalate-Induced Efficient Recycling of Waste Polyester Plastics into Metal–Organic<br>Frameworks. CCS Chemistry, 2019, 1, 561-570.                                                                                 | 4.6 | 33        |
| 38 | Self-assembly of single metal sites embedded covalent organic frameworks into multi-dimensional nanostructures for efficient CO2 electroreduction. Chinese Chemical Letters, 2022, 33, 1439-1444.                          | 4.8 | 31        |
| 39 | Exfoliation of covalent organic frameworks into MnO2-loaded ultrathin nanosheets as efficient cathode catalysts for Li-CO2 batteries. Cell Reports Physical Science, 2021, 2, 100392.                                      | 2.8 | 27        |
| 40 | A Solventâ€Free Hotâ€Pressing Method for Preparing Metal–Organicâ€Framework Coatings. Angewandte<br>Chemie, 2016, 128, 3480-3484.                                                                                          | 1.6 | 22        |
| 41 | Covalent Organic Framework Based Functional Materials: Important Catalysts for Efficient<br>CO <sub>2</sub> Utilization. Angewandte Chemie, 2022, 134, .                                                                   | 1.6 | 22        |
| 42 | Boosting Highly Ordered Porosity in Lanthanum Metal-Organic Frameworks for Ring-Opening Polymerization of Î <sup>3</sup> -Butyrolactone. CheM, 2021, 7, 463-479.                                                           | 5.8 | 21        |
| 43 | A Tale of Copper Coordination Frameworks: Controlled Singleâ€Crystalâ€toâ€Singleâ€Crystal<br>Transformations and Their Catalytic CH Bond Activation Properties. Chemistry - A European Journal,<br>2015, 21, 13894-13899. | 1.7 | 20        |
| 44 | Selfâ€Assembly of Hydroxyl Metal–Organic Polyhedra and Polymer into Cuâ€Based Hollow Spheres for<br>Product‧elective CO <sub>2</sub> Electroreduction. Small Structures, 2021, 2, 2100012.                                 | 6.9 | 20        |
| 45 | Imparting CO <sub>2</sub> Electroreduction Auxiliary for Integrated Morphology Tuning and<br>Performance Boosting in a Porphyrinâ€based Covalent Organic Framework. Angewandte Chemie, 2022,<br>134, .                     | 1.6 | 20        |
| 46 | Decavanadate-based clusters as bifunctional catalysts for efficient treatment of carbon dioxide and simulant sulfur mustard. Journal of CO2 Utilization, 2021, 45, 101419.                                                 | 3.3 | 18        |
| 47 | Decavanadateâ€based Transition Metal Hybrids as Bifunctional Catalysts for Sulfide Oxidation and C—C<br>Bond Construction. Chinese Journal of Chemistry, 2021, 39, 2495-2503.                                              | 2.6 | 18        |
| 48 | Single-metal site-embedded conjugated macrocyclic hybrid catalysts enable boosted CO2 reduction and evolution kinetics in Li-CO2 batteries. Cell Reports Physical Science, 2021, 2, 100583.                                | 2.8 | 15        |
| 49 | Implanting Numerous Hydrogenâ€Bonding Networks in a Cuâ€Porphyrinâ€Based Nanosheet to Boost CH 4<br>Selectivity in Neutralâ€Media CO 2 Electroreduction. Angewandte Chemie, 2021, 133, 22123-22129.                        | 1.6 | 14        |
| 50 | Porphyrinâ€Based COF 2D Materials: Variable Modification of Sensing Performances by<br>Postâ€Metallization. Angewandte Chemie, 0, , .                                                                                      | 1.6 | 13        |
| 51 | Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Liâ^'S Batteries.<br>Angewandte Chemie, 2022, 134, .                                                                                     | 1.6 | 12        |
| 52 | Boosting CO2 electroreduction performance over fullerene-modified MOF-545-Co promoted by π–π<br>interaction. Chinese Chemical Letters, 2023, 34, 107459.                                                                   | 4.8 | 12        |
| 53 | Construction of an Electron Bridge in Polyoxometalates/Graphene Oxide Ultrathin Nanosheets To<br>Boost the Lithium Storage Performance. Energy & Fuels, 2020, 34, 16968-16977.                                             | 2.5 | 11        |
| 54 | Stepped Channels Integrated Lithium–Sulfur Separator via Photoinduced Multidimensional<br>Fabrication of Metal–Organic Frameworks. Angewandte Chemie, 2021, 133, 10235-10242.                                              | 1.6 | 8         |

YIFA CHEN

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Three-in-one Fe-porphyrin based hybrid nanosheets for enhanced CO2 reduction and evolution kinetics in Li-CO2 battery. Chinese Chemical Letters, 2023, 34, 107633.                                                                         | 4.8  | 7         |
| 56 | Explosives: Metal-Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive<br>with Low Electrostatic Sensitivity and Excellent Initiation Ability (Adv. Mater. 28/2016). Advanced<br>Materials, 2016, 28, 5766-5766. | 11.1 | 6         |
| 57 | One-step assembly of Pd-Keggin-polyoxometalates for catalytic benzothiadiazole generation and derived cell-imaging probe application. Chinese Chemical Letters, 2023, 34, 107692.                                                          | 4.8  | 5         |
| 58 | Imidazole-Dependent Assembly of Copper Polymolybdate Frameworks for One-Pot Sulfide Oxidation<br>and C–H Activation. Energy & Fuels, 2022, 36, 1665-1675.                                                                                  | 2.5  | 2         |
| 59 | Titelbild: Photoinduced Postsynthetic Polymerization of a Metal-Organic Framework toward a<br>Flexible Stand-Alone Membrane (Angew. Chem. 14/2015). Angewandte Chemie, 2015, 127, 4199-4199.                                               | 1.6  | 0         |