Sharon J Peacock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3218026/publications.pdf

Version: 2024-02-01

428 papers 42,502 citations

88 h-index 184 g-index

466 all docs

466 docs citations

466 times ranked 38801 citing authors

#	Article	IF	CITATIONS
1	Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19). JAMA - Journal of the American Medical Association, 2020, 324, 782.	7.4	3,597
2	Multilocus Sequence Typing for Characterization of Methicillin-Resistant and Methicillin-Susceptible Clones of <i>Staphylococcus aureus</i>). Journal of Clinical Microbiology, 2000, 38, 1008-1015.	3.9	2,746
3	SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 2021, 19, 409-424.	28.6	2,650
4	Evolution of MRSA During Hospital Transmission and Intercontinental Spread. Science, 2010, 327, 469-474.	12.6	1,054
5	Complete genomes of two clinical <i>Staphylococcus aureus</i> strains: Evidence for the rapid evolution of virulence and drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9786-9791.	7.1	830
6	Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infectious Diseases, The, 2011, 11, 595-603.	9.1	751
7	Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nature Microbiology, $2016,1,.$	13.3	704
8	Genomic plasticity of the causative agent of melioidosis, <i>Burkholderia pseudomallei</i> Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14240-14245.	7.1	675
9	Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nature Genetics, 2013, 45, 109-113.	21.4	669
10	Melioidosis. New England Journal of Medicine, 2012, 367, 1035-1044.	27.0	648
11			
	Rapid Whole-Genome Sequencing for Investigation of a Neonatal MRSA Outbreak. New England Journal of Medicine, 2012, 366, 2267-2275.	27.0	609
12	Rapid Whole-Genome Sequencing for Investigation of a Neonatal MRSA Outbreak. New England Journal of Medicine, 2012, 366, 2267-2275. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet, The, 2013, 381, 1551-1560.	27.0	596
12	of Medicine, 2012, 366, 2267-2275. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients		
	of Medicine, 2012, 366, 2267-2275. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet, The, 2013, 381, 1551-1560.	13.7	596
13	of Medicine, 2012, 366, 2267-2275. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet, The, 2013, 381, 1551-1560. How Clonal Is Staphylococcus aureus?. Journal of Bacteriology, 2003, 185, 3307-3316. Virulent Combinations of Adhesin and Toxin Genes in Natural Populations of Staphylococcus aureus.	13.7 2.2	596 560
13 14	of Medicine, 2012, 366, 2267-2275. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet, The, 2013, 381, 1551-1560. How Clonal Is Staphylococcus aureus?. Journal of Bacteriology, 2003, 185, 3307-3316. Virulent Combinations of Adhesin and Toxin Genes in Natural Populations of Staphylococcus aureus. Infection and Immunity, 2002, 70, 4987-4996. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus:	13.7 2.2 2.2	596 560 539
13 14 15	of Medicine, 2012, 366, 2267-2275. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet, The, 2013, 381, 1551-1560. How Clonal Is Staphylococcus aureus?. Journal of Bacteriology, 2003, 185, 3307-3316. Virulent Combinations of Adhesin and Toxin Genes in Natural Populations of Staphylococcus aureus. Infection and Immunity, 2002, 70, 4987-4996. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infectious Diseases, The, 2013, 13, 130-136. Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nature Reviews	13.7 2.2 2.2 9.1	596 560 539

#	Article	IF	CITATIONS
19	Melioidosis. Nature Reviews Disease Primers, 2018, 4, 17107.	30.5	430
20	Mechanisms of Methicillin Resistance in <i>Staphylococcus aureus</i> . Annual Review of Biochemistry, 2015, 84, 577-601.	11.1	429
21	Increasing Incidence of Human Melioidosis in Northeast Thailand. American Journal of Tropical Medicine and Hygiene, 2010, 82, 1113-1117.	1.4	353
22	Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19: a prospective genomic surveillance study. Lancet Infectious Diseases, The, 2020, 20, 1263-1271.	9.1	352
23	Microarrays Reveal that Each of the Ten Dominant Lineages of Staphylococcus aureus Has a Unique Combination of Surface-Associated and Regulatory Genes. Journal of Bacteriology, 2006, 188, 669-676.	2.2	303
24	What determines nasal carriage of Staphylococcus aureus?. Trends in Microbiology, 2001, 9, 605-610.	7.7	290
25	Antibody response to SARS-CoV-2 infection in humans: A systematic review. PLoS ONE, 2020, 15, e0244126.	2.5	269
26	The Cluster 1 Type VI Secretion System Is a Major Virulence Determinant in <i>Burkholderia pseudomallei</i> . Infection and Immunity, 2011, 79, 1512-1525.	2.2	258
27	Recognizing the reagent microbiome. Nature Microbiology, 2018, 3, 851-853.	13.3	255
28	What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira. PLoS Neglected Tropical Diseases, 2016, 10, e0004403.	3.0	253
29	Risk Factors For Hematogenous Complications of Intravascular CatheterAssociated Staphylococcus aureus Bacteremia. Clinical Infectious Diseases, 2005, 40, 695-703.	5. 8	235
30	Whole-genome sequencing to control antimicrobial resistance. Trends in Genetics, 2014, 30, 401-407.	6.7	232
31	Systematic longitudinal survey of invasive <i>Escherichia coli</i> in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Research, 2017, 27, 1437-1449.	5. 5	231
32	T cell response to SARS-CoV-2 infection in humans: A systematic review. PLoS ONE, 2021, 16, e0245532.	2.5	228
33	Melioidosis: a clinical overview. British Medical Bulletin, 2011, 99, 125-139.	6.9	225
34	MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Molecular Microbiology, 2002, 44, 1269-1286.	2.5	220
35	Predicting the virulence of MRSA from its genome sequence. Genome Research, 2014, 24, 839-849.	5.5	210
36	Improved Multilocus Sequence Typing Scheme for Staphylococcus epidermidis. Journal of Clinical Microbiology, 2007, 45, 616-619.	3.9	207

#	Article	IF	Citations
37	Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. ELife, 2016, 5, .	6.0	207
38	Staphylococcus aureusclumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cellular Microbiology, 2002, 4, 759-770.	2.1	202
39	Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology (United Kingdom), 1999, 145, 3477-3486.	1.8	196
40	Whole-Genome Sequencing for Rapid Susceptibility Testing of <i>M. tuberculosis</i> lournal of Medicine, 2013, 369, 290-292.	27.0	195
41	Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel <i>mecA</i> homologue <i>mecC</i> . EMBO Molecular Medicine, 2013, 5, 509-515.	6.9	192
42	Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology (United Kingdom), 2003, 149, 643-654.	1.8	184
43	Identification of In Vivo–Expressed Antigens ofStaphylococcus aureusand Their Use in Vaccinations for Protection against Nasal Carriage. Journal of Infectious Diseases, 2006, 193, 1098-1108.	4.0	183
44	Rapid Bacterial Whole-Genome Sequencing to Enhance Diagnostic and Public Health Microbiology. JAMA Internal Medicine, 2013, 173, 1397.	5.1	181
45	Molecular tracing of the emergence, diversification, and transmission of <i>S. aureus</i>) sequence type 8 in a New York community. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6738-6743.	7.1	176
46	A <i>Burkholderia pseudomallei</i> protein microarray reveals serodiagnostic and cross-reactive antigens. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13499-13504.	7.1	171
47	Fool's Gold: Why Imperfect Reference Tests Are Undermining the Evaluation of Novel Diagnostics: A Reevaluation of 5 Diagnostic Tests for Leptospirosis. Clinical Infectious Diseases, 2012, 55, 322-331.	5.8	171
48	Determinants of Acquisition and Carriage of Staphylococcus aureus in Infancy. Journal of Clinical Microbiology, 2003, 41, 5718-5725.	3.9	170
49	Workshop on Treatment of and Postexposure Prophylaxis for <i>Burkholderia pseudomallei</i> Burkholderia pseudomalleiBurkholderia p	4.3	170
50	A Dominant Clone of Leptospira interrogans Associated with an Outbreak of Human Leptospirosis in Thailand. PLoS Neglected Tropical Diseases, 2007, 1, e56.	3.0	167
51	Fibronectin-binding protein A of Staphylococcus aureus has multiple, substituting, binding regions that mediate adherence to fibronectin and invasion of endothelial cells. Cellular Microbiology, 2001, 3, 839-851.	2.1	162
52	The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. Lancet Infectious Diseases, The, 2020, 20, e51-e60.	9.1	161
53	Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology (United Kingdom), 2005, 151, 1453-1464.	1.8	157
54	Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nature Ecology and Evolution, 2018, 2, 1468-1478.	7.8	156

#	Article	IF	Citations
55	Activities of Daily Living Associated with Acquisition of Melioidosis in Northeast Thailand: A Matched Case-Control Study. PLoS Neglected Tropical Diseases, 2013, 7, e2072.	3.0	155
56	A Single Multilocus Sequence Typing (MLST) Scheme for Seven Pathogenic Leptospira Species. PLoS Neglected Tropical Diseases, 2013, 7, e1954.	3.0	153
57	IFN- \hat{I}^3 at the Site of Infection Determines Rate of Clearance of Infection in Cryptococcal Meningitis. Journal of Immunology, 2005, 174, 1746-1750.	0.8	150
58	Management of Accidental Laboratory Exposure to <i>Burkholderia pseudomallei</i> and <i>B. mallei</i> . Emerging Infectious Diseases, 2008, 14, e2-e2.	4.3	140
59	Doxycycline versus Azithromycin for Treatment of Leptospirosis and Scrub Typhus. Antimicrobial Agents and Chemotherapy, 2007, 51, 3259-3263.	3.2	139
60	Emergence of methicillin resistance predates the clinical use of antibiotics. Nature, 2022, 602, 135-141.	27.8	138
61	Defining the True Sensitivity of Culture for the Diagnosis of Melioidosis Using Bayesian Latent Class Models. PLoS ONE, 2010, 5, e12485.	2.5	136
62	One Health Genomic Surveillance of Escherichia coli Demonstrates Distinct Lineages and Mobile Genetic Elements in Isolates from Humans versus Livestock. MBio, 2019, 10, .	4.1	130
63	Evolutionary dynamics of methicillin-resistant Staphylococcus aureus within a healthcare system. Genome Biology, 2015, 16, 81.	8.8	129
64	Toll-Like Receptor 2 Impairs Host Defense in Gram-Negative Sepsis Caused by Burkholderia pseudomallei (Melioidosis). PLoS Medicine, 2007, 4, e248.	8.4	128
65	Risk Factors for Recurrent Melioidosis in Northeast Thailand. Clinical Infectious Diseases, 2006, 43, 979-986.	5.8	124
66	Biological Relevance of Colony Morphology and Phenotypic Switching by Burkholderia pseudomallei. Journal of Bacteriology, 2007, 189, 807-817.	2.2	124
67	Global and regional dissemination and evolution of Burkholderia pseudomallei. Nature Microbiology, 2017, 2, 16263.	13.3	124
68	Phenotypic switching of antibiotic resistance circumvents permanent costs in Staphylococcus aureus. Current Biology, 2001, 11, 1810-1814.	3.9	120
69	Evolutionary Trade-Offs Underlie the Multi-faceted Virulence of Staphylococcus aureus. PLoS Biology, 2015, 13, e1002229.	5.6	120
70	Trimethoprim-sulfamethoxazole versus trimethoprim-sulfamethoxazole plus doxycycline as oral eradicative treatment for melioidosis (MERTH): a multicentre, double-blind, non-inferiority, randomised controlled trial. Lancet, The, 2014, 383, 807-814.	13.7	118
71	Clonal differences in Staphylococcus aureus bacteraemia-associated mortality. Nature Microbiology, 2017, 2, 1381-1388.	13.3	118
72	AMR Surveillance in low and middle-income settings - A roadmap for participation in the Global Antimicrobial Surveillance System (GLASS). Wellcome Open Research, 2017, 2, 92.	1.8	114

#	Article	IF	CITATIONS
73	Systematic Review and Consensus Guidelines for Environmental Sampling of Burkholderia pseudomallei. PLoS Neglected Tropical Diseases, 2013, 7, e2105.	3.0	113
74	Genome sequencing defines phylogeny and spread of methicillin-resistant <i>Staphylococcus aureus</i> in a high transmission setting. Genome Research, 2015, 25, 111-118.	5 . 5	111
75	Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant. Science, 2021, 374, eabl9551.	12.6	111
76	Melioidosis in 6 Tsunami Survivors in Southern Thailand. Clinical Infectious Diseases, 2005, 41, 982-990.	5.8	108
77	Association of High <i>Orientia tsutsugamushi</i> DNA Loads with Disease of Greater Severity in Adults with Scrub Typhus. Journal of Clinical Microbiology, 2009, 47, 430-434.	3.9	106
78	A pilot study of rapid whole-genome sequencing for the investigation of a <i>Legionella</i> Open, 2013, 3, e002175.	1.9	105
79	Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission. Nature Communications, 2015, 6, 6560.	12.8	105
80	A Randomized Controlled Trial of Granulocyte Colony-Stimulating Factor for the Treatment of Severe Sepsis Due to Melioidosis in Thailand. Clinical Infectious Diseases, 2007, 45, 308-314.	5.8	103
81	Longitudinal genomic surveillance of MRSA in the UK reveals transmission patterns in hospitals and the community. Science Translational Medicine, 2017, 9, .	12.4	103
82	A Link Between Virulence and Ecological Abundance in Natural Populations of Staphylococcus aureus. Science, 2001, 292, 114-116.	12.6	100
83	Management of melioidosis. Expert Review of Anti-Infective Therapy, 2006, 4, 445-455.	4.4	100
84	Antimicrobial resistance to ceftazidime involving loss of penicillin-binding protein 3 in <i>Burkholderia pseudomallei</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17165-17170.	7.1	98
85	Glyburide Is Anti-inflammatory and Associated with Reduced Mortality in Melioidosis. Clinical Infectious Diseases, 2011, 52, 717-725.	5.8	97
86	Evolution and Epidemiology of Multidrug-Resistant <i>Klebsiella pneumoniae</i> in the United Kingdom and Ireland. MBio, 2017, 8, .	4.1	97
87	A decade of genomic history for healthcare-associated <i>Enterococcus faecium</i> in the United Kingdom and Ireland. Genome Research, 2016, 26, 1388-1396.	5.5	96
88	Evolution of Burkholderia pseudomallei in Recurrent Melioidosis. PLoS ONE, 2012, 7, e36507.	2.5	96
89	A Shared Population of Epidemic Methicillin-Resistant Staphylococcus aureus 15 Circulates in Humans and Companion Animals. MBio, 2014, 5, e00985-13.	4.1	95
90	Strategies to Reduce Mortality from Bacterial Sepsis in Adults in Developing Countries. PLoS Medicine, 2008, 5, e175.	8.4	94

#	Article	IF	Citations
91	Melioidosis Vaccines: A Systematic Review and Appraisal of the Potential to Exploit Biodefense Vaccines for Public Health Purposes. PLoS Neglected Tropical Diseases, 2012, 6, e1488.	3.0	94
92	Diagnostic Accuracy of Real-Time PCR Assays Targeting 16S rRNA and lipl32 Genes for Human Leptospirosis in Thailand: A Case-Control Study. PLoS ONE, 2011, 6, e16236.	2.5	94
93	Development of a Prototype Lateral Flow Immunoassay (LFI) for the Rapid Diagnosis of Melioidosis. PLoS Neglected Tropical Diseases, 2014, 8, e2727.	3.0	93
94	Complex Routes of Nosocomial Vancomycin-Resistant Enterococcus faecium Transmission Revealed by Genome Sequencing. Clinical Infectious Diseases, 2017, 64, 886-893.	5.8	93
95	DEVELOPMENT OF ANTIBODIES TO BURKHOLDERIA PSEUDOMALLEI DURING CHILDHOOD IN MELIOIDOSIS-ENDEMIC NORTHEAST THAILAND. American Journal of Tropical Medicine and Hygiene, 2006, 74, 1074-1075.	1.4	93
96	Genomic islands from five strains of Burkholderia pseudomallei. BMC Genomics, 2008, 9, 566.	2.8	90
97	Early insights into the potential of the Oxford Nanopore MinION for the detection of antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy, 2015, 70, 2775-2778.	3.0	90
98	CAUSES OF COMMUNITY-ACQUIRED BACTEREMIA AND PATTERNS OF ANTIMICROBIAL RESISTANCE IN VIENTIANE, LAOS. American Journal of Tropical Medicine and Hygiene, 2006, 75, 978-985.	1.4	89
99	The toxin/immunity network of <i>Burkholderia pseudomallei</i> contactâ€dependent growth inhibition (CDI) systems. Molecular Microbiology, 2012, 84, 516-529.	2.5	86
100	Melioidosis. Current Opinion in Infectious Diseases, 2006, 19, 421-428.	3.1	85
101	Open-Label Randomized Trial of Oral Trimethoprim-Sulfamethoxazole, Doxycycline, and Chloramphenicol Compared with Trimethoprim-Sulfamethoxazole and Doxycycline for Maintenance Therapy of Melioidosis. Antimicrobial Agents and Chemotherapy, 2005, 49, 4020-4025.	3.2	84
102	The Microscopic Agglutination Test (MAT) Is an Unreliable Predictor of Infecting Leptospira Serovar in Thailand. American Journal of Tropical Medicine and Hygiene, 2009, 81, 695-697.	1.4	84
103	Leptospirosis Outbreak in Sri Lanka in 2008: Lessons for Assessing the Global Burden of Disease. American Journal of Tropical Medicine and Hygiene, 2011, 85, 471-478.	1.4	83
104	What Is Resistance? Impact of Phenotypic versus Molecular Drug Resistance Testing on Therapy for Multi- and Extensively Drug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	83
105	Recurrent Melioidosis in Patients in Northeast Thailand Is Frequently Due to Reinfection Rather than Relapse. Journal of Clinical Microbiology, 2005, 43, 6032-6034.	3.9	82
106	A Horizontal Gene Transfer Event Defines Two Distinct Groups within <i>Burkholderia pseudomallei</i> That Have Dissimilar Geographic Distributions. Journal of Bacteriology, 2007, 189, 9044-9049.	2.2	81
107	Staphylococcus aureus disease and drug resistance in resource-limited countries in south and east Asia. Lancet Infectious Diseases, The, 2009, 9, 130-135.	9.1	80
108	Rapid Whole-Genome Sequencing for Investigation of a Suspected Tuberculosis Outbreak. Journal of Clinical Microbiology, 2013, 51, 611-614.	3.9	80

#	Article	IF	CITATIONS
109	Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. Journal of Antimicrobial Chemotherapy, 2014, 69, 594-597.	3.0	80
110	Trimethoprim/sulfamethoxazole resistance in clinical isolates of Burkholderia pseudomallei. Journal of Antimicrobial Chemotherapy, 2005, 55, 1029-1031.	3.0	78
111	Survey of Antimicrobial Resistance in Clinical Burkholderia pseudomallei Isolates over Two Decades in Northeast Thailand. Antimicrobial Agents and Chemotherapy, 2011, 55, 5388-5391.	3.2	76
112	Two Randomized Controlled Trials of Ceftazidime Alone versus Ceftazidime in Combination with Trimethoprim-Sulfamethoxazole for the Treatment of Severe Melioidosis. Clinical Infectious Diseases, 2005, 41, 1105-1113.	5.8	75
113	Characterization of Ceftazidime Resistance Mechanisms in Clinical Isolates of Burkholderia pseudomallei from Australia. PLoS ONE, 2012, 7, e30789.	2.5	75
114	Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: a genomic epidemiology analysis. Lancet Microbe, The, 2020, 1, e328-e335.	7.3	75
115	Recent independent emergence of multiple multidrug-resistant <i>Serratia marcescens</i> clones within the United Kingdom and Ireland. Genome Research, 2016, 26, 1101-1109.	5.5	74
116	Nonrandom Distribution of Burkholderia pseudomallei Clones in Relation to Geographical Location and Virulence. Journal of Clinical Microbiology, 2006, 44, 2553-2557.	3.9	73
117	A novel hybrid SCCmec-mecC region in Staphylococcus sciuri. Journal of Antimicrobial Chemotherapy, 2014, 69, 911-918.	3.0	73
118	Whole genome sequencing of ESBL-producing Escherichia coli isolated from patients, farm waste and canals in Thailand. Genome Medicine, 2017, 9, 81.	8.2	73
119	Epidemiology, Microbiology and Mortality Associated with Community-Acquired Bacteremia in Northeast Thailand: A Multicenter Surveillance Study. PLoS ONE, 2013, 8, e54714.	2.5	72
120	The Core and Accessory Genomes of Burkholderia pseudomallei: Implications for Human Melioidosis. PLoS Pathogens, 2008, 4, e1000178.	4.7	71
121	Survival of Burkholderia pseudomallei in distilled water for 16 years. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2011, 105, 598-600.	1.8	71
122	Clinical and Molecular Epidemiology of Staphylococcus argenteus Infections in Thailand. Journal of Clinical Microbiology, 2015, 53, 1005-1008.	3.9	71
123	Immunosuppression associated with interleukin-1R-associated-kinase-M upregulation predicts mortality in Gram-negative sepsis (melioidosis). Critical Care Medicine, 2009, 37, 569-576.	0.9	70
124	Genomic acquisition of a capsular polysaccharide virulence cluster by non-pathogenic Burkholderia isolates. Genome Biology, 2010, 11, R89.	9.6	70
125	The Genetic and Molecular Basis of O-Antigenic Diversity in Burkholderia pseudomallei Lipopolysaccharide. PLoS Neglected Tropical Diseases, 2012, 6, e1453.	3.0	69
126	A Spaetzle-like role for nerve growth factor \hat{l}^2 in vertebrate immunity to <i>Staphylococcus aureus</i> Science, 2014, 346, 641-646.	12.6	68

#	Article	IF	Citations
127	Improving the estimation of the global burden of antimicrobial resistant infections. Lancet Infectious Diseases, The, 2019, 19, e392-e398.	9.1	68
128	Rapid Detection of the Pandemic Methicillin-Resistant <i>Staphylococcus aureus</i> Clone ST 239, a Dominant Strain in Asian Hospitals. Journal of Clinical Microbiology, 2008, 46, 1520-1522.	3.9	67
129	Activation of the Coagulation Cascade in Patients with Leptospirosis. Clinical Infectious Diseases, 2008, 46, 254-260.	5.8	67
130	A Staphylococcus xylosus Isolate with a New <i>mecC</i> Allotype. Antimicrobial Agents and Chemotherapy, 2013, 57, 1524-1528.	3.2	67
131	Accuracy of Burkholderia pseudomallei Identification Using the API 20NE System and a Latex Agglutination Test. Journal of Clinical Microbiology, 2007, 45, 3774-3776.	3.9	66
132	Burkholderia pseudomallei genome plasticity associated with genomic island variation. BMC Genomics, 2008, 9, 190.	2.8	66
133	Genetic typing of the 56-kDa type-specific antigen gene of contemporary <i>Orientia tsutsugamushi</i> isolates causing human scrub typhus at two sites in north-eastern and western Thailand. FEMS Immunology and Medical Microbiology, 2008, 52, 335-342.	2.7	65
134	Staphylococcus aureus Bacteraemia in a Tropical Setting: Patient Outcome and Impact of Antibiotic Resistance. PLoS ONE, 2009, 4, e4308.	2.5	65
135	Genome-based characterization of hospital-adapted Enterococcus faecalis lineages. Nature Microbiology, 2016, 1, .	13.3	65
136	Optimization of Culture of Leptospira from Humans with Leptospirosis. Journal of Clinical Microbiology, 2007, 45, 1363-1365.	3.9	64
137	Melioidosis Caused by (i>Burkholderia pseudomallei (li>in Drinking Water, Thailand, 2012. Emerging Infectious Diseases, 2014, 20, 265-268.	4.3	63
138	Building a genomic framework for prospective MRSA surveillance in the United Kingdom and the Republic of Ireland. Genome Research, 2016, 26, 263-270.	5.5	63
139	Genomic Surveillance of Enterococcus faecium Reveals Limited Sharing of Strains and Resistance Genes between Livestock and Humans in the United Kingdom. MBio, 2018, 9, .	4.1	63
140	From genotype to phenotype: can systems biology be used to predict Staphylococcus aureus virulence?. Nature Reviews Microbiology, 2012, 10, 791-797.	28.6	62
141	Loop-Mediated Isothermal Amplification Method Targeting the TTS1 Gene Cluster for Detection of <i>Burkholderia pseudomallei</i> and Diagnosis of Melioidosis. Journal of Clinical Microbiology, 2008, 46, 568-573.	3.9	61
142	Arthropod Borne Disease: The Leading Cause of Fever in Pregnancy on the Thai-Burmese Border. PLoS Neglected Tropical Diseases, 2010, 4, e888.	3.0	61
143	Whole genome sequencing reveals high-resolution epidemiological links between clinical and environmental Klebsiella pneumoniae. Genome Medicine, 2017, 9, 6.	8.2	61
144	Changing the paradigm for hospital outbreak detection by leading with genomic surveillance of nosocomial pathogens. Microbiology (United Kingdom), 2018, 164, 1213-1219.	1.8	61

#	Article	IF	CITATIONS
145	Causes of community-acquired bacteremia and patterns of antimicrobial resistance in Vientiane, Laos. American Journal of Tropical Medicine and Hygiene, 2006, 75, 978-85.	1.4	61
146	Clinical Diagnosis and Geographic Distribution of Leptospirosis, Thailand. Emerging Infectious Diseases, 2007, 13, 124-126.	4.3	60
147	Development of ceftazidime resistance in an acute Burkholderia pseudomallei infection. Infection and Drug Resistance, 2012, 5, 129.	2.7	60
148	Baseline Correlation and Comparative Kinetics of Cerebrospinal Fluid Colonyâ€Forming Unit Counts and Antigen Titers in Cryptococcal Meningitis. Journal of Infectious Diseases, 2005, 192, 681-684.	4.0	59
149	Whole-genome sequencing reveals transmission of vancomycin-resistant Enterococcus faecium in a healthcare network. Genome Medicine, 2016, 8, 4.	8.2	58
150	Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex. Genome Medicine, 2020, 12, 27.	8.2	58
151	Rapid Immunofluorescence Microscopy for Diagnosis of Melioidosis. Vaccine Journal, 2005, 12, 555-556.	3.1	57
152	Consensus on the Development of Vaccines against Naturally Acquired Melioidosis. Emerging Infectious Diseases, 2015, 21, .	4.3	57
153	Comparison of Ashdown's Medium, Burkholderia cepacia Medium, and Burkholderia pseudomallei Selective Agar for Clinical Isolation of Burkholderia pseudomallei. Journal of Clinical Microbiology, 2005, 43, 5359-5361.	3.9	56
154	Molecular Basis of Rare Aminoglycoside Susceptibility and Pathogenesis of Burkholderia pseudomallei Clinical Isolates from Thailand. PLoS Neglected Tropical Diseases, 2009, 3, e519.	3.0	55
155	Host Responses to Melioidosis and Tuberculosis Are Both Dominated by Interferon-Mediated Signaling. PLoS ONE, 2013, 8, e54961.	2.5	55
156	Characterization of Plasmids in Extensively Drug-Resistant Acinetobacter Strains Isolated in India and Pakistan. Antimicrobial Agents and Chemotherapy, 2015, 59, 923-929.	3.2	54
157	Tsunami in Thailand â€" Disaster Management in a District Hospital. New England Journal of Medicine, 2005, 352, 962-964.	27.0	53
158	Phenotypic and Functional Characterization of Human Memory T Cell Responses to Burkholderia pseudomallei. PLoS Neglected Tropical Diseases, 2009, 3, e407.	3.0	53
159	Accuracy of Loop-Mediated Isothermal Amplification for Diagnosis of Human Leptospirosis in Thailand. American Journal of Tropical Medicine and Hygiene, 2011, 84, 614-620.	1.4	53
160	Use of Vitek 2 Antimicrobial Susceptibility Profile To Identify <i>mecC</i> in Methicillin-Resistant Staphylococcus aureus. Journal of Clinical Microbiology, 2013, 51, 2732-2734.	3.9	53
161	Quantifying acquisition and transmission of Enterococcus faecium using genomic surveillance. Nature Microbiology, 2021, 6, 103-111.	13.3	53
162	CLIMB-COVID: continuous integration supporting decentralised sequencing for SARS-CoV-2 genomic surveillance. Genome Biology, 2021, 22, 196.	8.8	53

#	Article	IF	CITATIONS
163	The potential emergence of leptospirosis in Sri Lanka. Lancet Infectious Diseases, The, 2009, 9, 524-526.	9.1	52
164	Molecular detection and speciation of pathogenic Leptospiraspp. in blood from patients with culture-negative leptospirosis. BMC Infectious Diseases, 2011, 11, 338.	2.9	52
165	Accuracy of a Commercial IgM ELISA for the Diagnosis of Human Leptospirosis in Thailand. American Journal of Tropical Medicine and Hygiene, 2012, 86, 524-527.	1.4	52
166	Reconstructing transmission trees for communicable diseases using densely sampled genetic data. Annals of Applied Statistics, 2016, 10, 395-417.	1.1	52
167	Biogeography and Virulence of Staphylococcus aureus. PLoS ONE, 2009, 4, e6216.	2.5	51
168	Genetic Diversity and Microevolution of Burkholderia pseudomallei in the Environment. PLoS Neglected Tropical Diseases, 2008, 2, e182.	3.0	51
169	High Rates of Homologous Recombination in the Mite Endosymbiont and Opportunistic Human Pathogen Orientia tsutsugamushi. PLoS Neglected Tropical Diseases, 2010, 4, e752.	3.0	50
170	Within-Host Evolution of Burkholderia pseudomallei in Four Cases of Acute Melioidosis. PLoS Pathogens, 2010, 6, e1000725.	4.7	50
171	The BpeEF-OprC Efflux Pump Is Responsible for Widespread Trimethoprim Resistance in Clinical and Environmental Burkholderia pseudomallei Isolates. Antimicrobial Agents and Chemotherapy, 2013, 57, 4381-4386.	3.2	50
172	Evolution and Global Transmission of a Multidrug-Resistant, Community-Associated Methicillin-Resistant Staphylococcus aureus Lineage from the Indian Subcontinent. MBio, 2019, 10, .	4.1	50
173	Development and Validation of Burkholderia pseudomallei-Specific Real-Time PCR Assays for Clinical, Environmental or Forensic Detection Applications. PLoS ONE, 2012, 7, e37723.	2.5	50
174	RAPID DIAGNOSIS OF SCRUB TYPHUS IN RURAL THAILAND USING POLYMERASE CHAIN REACTION. American Journal of Tropical Medicine and Hygiene, 2006, 75, 1099-1102.	1.4	50
175	Serological and blood culture investigations of Nepalese fever patients. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2007, 101, 686-690.	1.8	49
176	Emergence of Pediatric Melioidosis in Siem Reap, Cambodia. American Journal of Tropical Medicine and Hygiene, 2010, 82, 1106-1112.	1.4	49
177	Urokinase Receptor Is Necessary for Bacterial Defense against Pneumonia-Derived Septic Melioidosis by Facilitating Phagocytosis. Journal of Immunology, 2010, 184, 3079-3086.	0.8	49
178	Rapid single-colony whole-genome sequencing of bacterial pathogens. Journal of Antimicrobial Chemotherapy, 2014, 69, 1275-1281.	3.0	49
179	The autopsy: A useful tool or an old relic?. Journal of Pathology, 1988, 156, 9-14.	4.5	48
180	High-Throughput mRNA Profiling Characterizes the Expression of Inflammatory Molecules in Sepsis Caused by <i>Burkholderia pseudomallei</i> . Infection and Immunity, 2007, 75, 3074-3079.	2.2	48

#	Article	IF	CITATIONS
181	EvaluatingBurkholderia pseudomalleiBip proteins as vaccines and Bip antibodies as detection agents. FEMS Immunology and Medical Microbiology, 2008, 52, 78-87.	2.7	48
182	Clinical Definitions of Melioidosis. American Journal of Tropical Medicine and Hygiene, 2013, 88, 411-413.	1.4	48
183	Dosing Regimens of Cotrimoxazole (Trimethoprim-Sulfamethoxazole) for Melioidosis. Antimicrobial Agents and Chemotherapy, 2009, 53, 4193-4199.	3.2	47
184	Burkholderia pseudomallei Is Spatially Distributed in Soil in Northeast Thailand. PLoS Neglected Tropical Diseases, 2010, 4, e694.	3.0	47
185	Genomic identification of cryptic susceptibility to penicillins and \hat{l}^2 -lactamase inhibitors in methicillin-resistant Staphylococcus aureus. Nature Microbiology, 2019, 4, 1680-1691.	13.3	47
186	A One Health Study of the Genetic Relatedness of Klebsiella pneumoniae and Their Mobile Elements in the East of England. Clinical Infectious Diseases, 2020, 70, 219-226.	5.8	46
187	Accuracy of Enzyme-Linked Immunosorbent Assay Using Crude and Purified Antigens for Serodiagnosis of Melioidosis. Vaccine Journal, 2007, 14, 110-113.	3.1	45
188	Prevalence and Sequence Diversity of a Factor Required for Actin-Based Motility in Natural Populations of <i>Burkholderia</i> Species. Journal of Clinical Microbiology, 2008, 46, 2418-2422.	3.9	45
189	Systematic Surveillance Detects Multiple Silent Introductions and Household Transmission of Methicillin-Resistant <i>Staphylococcus aureus</i> USA300 in the East of England. Journal of Infectious Diseases, 2016, 214, 447-453.	4.0	45
190	Using a Web-Based Application to Define the Accuracy of Diagnostic Tests When the Gold Standard Is Imperfect. PLoS ONE, 2013, 8, e79489.	2.5	45
191	Highly Sensitive Direct Detection and Quantification of Burkholderia pseudomallei Bacteria in Environmental Soil Samples by Using Real-Time PCR. Applied and Environmental Microbiology, 2011, 77, 6486-6494.	3.1	44
192	Whole-Genome Sequencing Confirms that Burkholderia pseudomallei Multilocus Sequence Types Common to Both Cambodia and Australia Are Due to Homoplasy. Journal of Clinical Microbiology, 2015, 53, 323-326.	3.9	44
193	Evolution of the <i>Staphylococcus argenteus</i> ST2250 Clone in Northeastern Thailand Is Linked with the Acquisition of Livestock-Associated Staphylococcal Genes. MBio, 2017, 8, .	4.1	44
194	Longitudinal genomic surveillance of multidrug-resistant Escherichia coli carriage in a long-term care facility in the United Kingdom. Genome Medicine, 2017, 9, 70.	8.2	44
195	Subpopulations of Staphylococcus aureus Clonal Complex 121 Are Associated with Distinct Clinical Entities. PLoS ONE, 2013, 8, e58155.	2.5	43
196	Evolution of mobile genetic element composition in an epidemic methicillin-resistant Staphylococcus aureus: temporal changes correlated with frequent loss and gain events. BMC Genomics, 2017, 18, 684.	2.8	43
197	Emergence of Community-Associated Methicillin-Resistant Staphylococcus aureus Associated with Pediatric Infection in Cambodia. PLoS ONE, 2009, 4, e6630.	2.5	43
198	Quantitation of B. Pseudomallei in Clinical Samples. American Journal of Tropical Medicine and Hygiene, 2007, 77, 812-813.	1.4	43

#	Article	IF	Citations
199	Detection of Burkholderia pseudomallei in Soil within the Lao People's Democratic Republic. Journal of Clinical Microbiology, 2005, 43, 923-924.	3.9	42
200	Comparison of Two Multilocus Sequence Based Genotyping Schemes for Leptospira Species. PLoS Neglected Tropical Diseases, 2011, 5, e1374.	3.0	42
201	Burkholderia Hep_Hag autotransporter (BuHA) proteins elicit a strong antibody response during experimental glanders but not human melioidosis. BMC Microbiology, 2007, 7, 19.	3.3	41
202	Impaired TLR5 Functionality Is Associated with Survival in Melioidosis. Journal of Immunology, 2013, 190, 3373-3379.	0.8	41
203	DISEASE SEVERITY AND OUTCOME OF MELIOIDOSIS IN HIV COINFECTED INDIVIDUALS. American Journal of Tropical Medicine and Hygiene, 2005, 73, 1165-1166.	1.4	41
204	Consensus Guidelines for Dosing of Amoxicillin-Clavulanate in Melioidosis. American Journal of Tropical Medicine and Hygiene, 2008, 78, 208-209.	1.4	41
205	Development of antibodies to Burkholderia pseudomallei during childhood in melioidosis-endemic northeast Thailand. American Journal of Tropical Medicine and Hygiene, 2006, 74, 1074-5.	1.4	41
206	Duration of exposure to multiple antibiotics is associated with increased risk of VRE bacteraemia: a nested case-control study. Journal of Antimicrobial Chemotherapy, 2018, 73, 1692-1699.	3.0	40
207	Detection of vancomycin-resistant <i>Enterococcus faecium </i> hospital-adapted lineages in municipal wastewater treatment plants indicates widespread distribution and release into the environment. Genome Research, 2019, 29, 626-634.	5.5	40
208	Factors Predicting and Reducing Mortality in Patients with Invasive Staphylococcus aureus Disease in a Developing Country. PLoS ONE, 2009, 4, e6512.	2.5	39
209	Effect of colony morphology variation of Burkholderia pseudomallei on intracellular survival and resistance to antimicrobial environments in human macrophages in vitro. BMC Microbiology, 2010, 10, 303.	3.3	39
210	Randomized Soil Survey of the Distribution of <i>Burkholderia pseudomallei</i> in Rice Fields in Laos. Applied and Environmental Microbiology, 2011, 77, 532-536.	3.1	39
211	Emergent and evolving antimicrobial resistance cassettes in community-associated fusidic acid and meticillin-resistant Staphylococcus aureus. International Journal of Antimicrobial Agents, 2015, 45, 477-484.	2.5	39
212	Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: a genomic surveillance study. Lancet Microbe, The, 2021, 2, e472-e480.	7.3	39
213	Improved characterisation of MRSA transmission using within-host bacterial sequence diversity. ELife, 2019, 8, .	6.0	39
214	BurkDiff: A Real-Time PCR Allelic Discrimination Assay for Burkholderia Pseudomallei and B. mallei. PLoS ONE, 2010, 5, e15413.	2.5	38
215	Clinical Epidemiology of 7,126 Melioidosis Patients in Thailand and the Implications for a National Notifiable Diseases Surveillance System. Open Forum Infectious Diseases, 2019, 6, ofz498.	0.9	38
216	Endogenous Interleukin-18 Improves the Early Antimicrobial Host Response in Severe Melioidosis. Infection and Immunity, 2007, 75, 3739-3746.	2.2	37

#	Article	IF	Citations
217	Expression Profile and Function of Triggering Receptor Expressed on Myeloid Cells–1 during Melioidosis. Journal of Infectious Diseases, 2007, 196, 1707-1716.	4.0	37
218	Increasing Incidence of Hospital-Acquired and Healthcare-Associated Bacteremia in Northeast Thailand: A Multicenter Surveillance Study. PLoS ONE, 2014, 9, e109324.	2.5	37
219	Soil Nutrient Depletion Is Associated with the Presence of Burkholderia pseudomallei. Applied and Environmental Microbiology, 2016, 82, 7086-7092.	3.1	37
220	Patient and sample-related factors that effect the success of in vitro isolation of Orientia tsutsugamushi. Southeast Asian Journal of Tropical Medicine and Public Health, 2007, 38, 91-6.	1.0	37
221	Role and Significance of Quantitative Urine Cultures in Diagnosis of Melioidosis. Journal of Clinical Microbiology, 2005, 43, 2274-2276.	3.9	36
222	<i>Burkholderia pseudomallei</i> Antibodies in Children, Cambodia. Emerging Infectious Diseases, 2008, 14, 301-303.	4.3	36
223	Emergence of Community-Associated Methicillin-Resistant Staphylococcus aureus Carriage in Children in Cambodia. American Journal of Tropical Medicine and Hygiene, 2011, 84, 313-317.	1.4	36
224	Health care: Bring microbial sequencing to hospitals. Nature, 2014, 509, 557-559.	27.8	36
225	Clinical, Environmental, and Serologic Surveillance Studies of Melioidosis in Gabon, 2012–2013. Emerging Infectious Diseases, 2015, 21, 40-47.	4.3	36
226	Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of Burkholderia pseudomallei from Asia and Australia and differentiation between Burkholderia species. PLoS ONE, 2017, 12, e0175294.	2.5	36
227	Burkholderia pseudomallei Is Genetically Diverse in Agricultural Land in Northeast Thailand. PLoS Neglected Tropical Diseases, 2009, 3, e496.	3.0	35
228	Identification of Circulating Bacterial Antigens by <i>In Vivo</i> Microbial Antigen Discovery. MBio, 2011, 2, .	4.1	35
229	Population Structure of Multidrug-Resistant Klebsiella oxytoca within Hospitals across the United Kingdom and Ireland Identifies Sharing of Virulence and Resistance Genes with K. pneumoniae. Genome Biology and Evolution, 2017, 9, 574-584.	2.5	35
230	â€~Antibiotic footprint' as a communication tool to aid reduction of antibiotic consumption. Journal of Antimicrobial Chemotherapy, 2019, 74, 2122-2127.	3.0	35
231	Public health impact of establishing the cause of bacterial infections in rural Asia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102, 5-6.	1.8	34
232	Glyburide Reduces Bacterial Dissemination in a Mouse Model of Melioidosis. PLoS Neglected Tropical Diseases, 2013, 7, e2500.	3.0	34
233	Barriers and Recommended Interventions to Prevent Melioidosis in Northeast Thailand: A Focus Group Study Using the Behaviour Change Wheel. PLoS Neglected Tropical Diseases, 2016, 10, e0004823.	3.0	34
234	Superspreaders drive the largest outbreaks of hospital onset COVID-19 infections. ELife, 2021, 10, .	6.0	34

#	Article	IF	Citations
235	Pan-genomic perspective on the evolution of the Staphylococcus aureus USA300 epidemic. Microbial Genomics, 2016, 2, e000058.	2.0	34
236	Prospective Clinical Evaluation of the Accuracy of 16S rRNA Real-Time PCR Assay for the Diagnosis of Melioidosis. American Journal of Tropical Medicine and Hygiene, 2007, 77, 814-817.	1.4	34
237	Diversity of 16S-23S rDNA Internal Transcribed Spacer (ITS) Reveals Phylogenetic Relationships in Burkholderia pseudomallei and Its Near-Neighbors. PLoS ONE, 2011, 6, e29323.	2.5	33
238	Melioidosis in Animals, Thailand, 2006–2010. Emerging Infectious Diseases, 2012, 18, 325-327.	4.3	33
239	Rapid Isolation and Susceptibility Testing of Leptospira spp. Using a New Solid Medium, LVW Agar. Antimicrobial Agents and Chemotherapy, 2013, 57, 297-302.	3.2	33
240	Sharing of carbapenemase-encoding plasmids between Enterobacteriaceae in UK sewage uncovered by MinION sequencing. Microbial Genomics, 2017, 3, e000114.	2.0	33
241	Molecular epidemiology and expression of capsular polysaccharides in Staphylococcus aureus clinical isolates in the United States. PLoS ONE, 2019, 14, e0208356.	2.5	33
242	Comparison of bacterial genome assembly software for MinION data and their applicability to medical microbiology. Microbial Genomics, 2016, 2, e000085.	2.0	33
243	Genomic surveillance of Escherichia coli ST131 identifies local expansion and serial replacement of subclones. Microbial Genomics, 2020, 6, .	2.0	33
244	Competition between Burkholderia pseudomallei and B. thailandensis. BMC Microbiology, 2015, 15, 56.	3.3	32
245	Old Drugs To Treat Resistant Bugs: Methicillin-Resistant Staphylococcus aureus Isolates with <i>mecC</i> Are Susceptible to a Combination of Penicillin and Clavulanic Acid. Antimicrobial Agents and Chemotherapy, 2015, 59, 7396-7404.	3.2	32
246	Identification and Characterization of Genetic Determinants of Isoniazid and Rifampicin Resistance in Mycobacterium tuberculosis in Southern India. Scientific Reports, 2019, 9, 10283.	3.3	32
247	Intensity of exposure and incidence of melioidosis in Thai children. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102, S37-S39.	1.8	31
248	Proteomic analysis of colony morphology variants of Burkholderia pseudomallei defines a role for the arginine deiminase system in bacterial survival. Journal of Proteomics, 2012, 75, 1031-1042.	2.4	31
249	Prospective evaluation of a rapid immunochromogenic cassette test for the diagnosis of melioidosis in northeast Thailand. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2006, 100, 64-67.	1.8	30
250	Microevolution of Burkholderia pseudomallei during an Acute Infection. Journal of Clinical Microbiology, 2014, 52, 3418-3421.	3.9	30
251	Transmission of methicillin-resistant Staphylococcus aureus in long-term care facilities and their related healthcare networks. Genome Medicine, 2016, 8, 102.	8.2	30
252	Leapfrogging laboratories: the promise and pitfalls of high-tech solutions for antimicrobial resistance surveillance in low-income settings. BMJ Global Health, 2020, 5, e003622.	4.7	30

#	Article	IF	Citations
253	Survey of Innate Immune Responses to Burkholderia pseudomallei in Human Blood Identifies a Central Role for Lipopolysaccharide. PLoS ONE, 2013, 8, e81617.	2.5	30
254	Monoclonal Antibody-Based Immunofluorescence Microscopy for the Rapid Identification of Burkholderia pseudomallei in Clinical Specimens. American Journal of Tropical Medicine and Hygiene, 2013, 89, 165-168.	1.4	29
255	Some Synonymous and Nonsynonymous <i>gyrA</i> Mutations in Mycobacterium tuberculosis Lead to Systematic False-Positive Fluoroquinolone Resistance Results with the Hain GenoType MTBDR <i>sl</i> Assays. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	29
256	Fetal inheritance of chromosomally integrated human herpesvirus 6 predisposes the mother to pre-eclampsia. Nature Microbiology, 2020, 5, 901-908.	13.3	29
257	Genomic surveillance of Escherichia coli in municipal wastewater treatment plants as an indicator of clinically relevant pathogens and their resistance genes. Microbial Genomics, 2019, 5, .	2.0	29
258	Feasibility of Modified Surviving Sepsis Campaign Guidelines in a Resource-Restricted Setting Based on a Cohort Study of Severe S. Aureus Sepsis. PLoS ONE, 2012, 7, e29858.	2.5	29
259	Variable Presentation of Neurological Melioidosis in Northeast Thailand. American Journal of Tropical Medicine and Hygiene, 2007, 77, 118-120.	1.4	29
260	Rapid diagnosis of scrub typhus in rural Thailand using polymerase chain reaction. American Journal of Tropical Medicine and Hygiene, 2006, 75, 1099-102.	1.4	29
261	Antibodies from Patients with Melioidosis Recognize Burkholderia mallei but Not Burkholderia thailandensis Antigens in the Indirect Hemagglutination Assay. Journal of Clinical Microbiology, 2005, 43, 4872-4874.	3.9	28
262	Meticillin-resistant Staphylococcus aureus in rural Asia. Lancet Infectious Diseases, The, 2006, 6, 70-71.	9.1	28
263	Enhanced Determination of Streptococcus pneumoniae Serotypes Associated with Invasive Disease in Laos by Using a Real-Time Polymerase Chain Reaction Serotyping Assay with Cerebrospinal Fluid. American Journal of Tropical Medicine and Hygiene, 2010, 83, 451-457.	1.4	28
264	Colony Morphology Variation of Burkholderia pseudomallei Is Associated with Antigenic Variation and O-Polysaccharide Modification. Infection and Immunity, 2015, 83, 2127-2138.	2.2	28
265	Whole-genome sequencing of multidrug-resistant Mycobacterium tuberculosis isolates from Myanmar. Journal of Global Antimicrobial Resistance, 2016, 6, 113-117.	2.2	28
266	Incidence and Characterisation of Methicillin-Resistant Staphylococcus aureus (MRSA) from Nasal Colonisation in Participants Attending a Cattle Veterinary Conference in the UK. PLoS ONE, 2013, 8, e68463.	2.5	28
267	Adhesion of Staphylococcus aureusto Collagen Is Not a Major Virulence Determinant for Septic Arthritis, Osteomyelitis, or Endocarditis. Journal of Infectious Diseases, 1999, 179, 291-293.	4.0	27
268	Pathogenicity of High-Dose Enteral Inoculation of Burkholderia pseudomallei to Mice. American Journal of Tropical Medicine and Hygiene, 2010, 83, 1066-1069.	1.4	27
269	Epidemiological Tracking and Population Assignment of the Non-Clonal Bacterium, Burkholderia pseudomallei. PLoS Neglected Tropical Diseases, 2011, 5, e1381.	3.0	27
270	In the critically ill patient, diabetes predicts mortality independent of statin therapy but is not associated with acute lung injury. Critical Care Medicine, 2012, 40, 1835-1843.	0.9	27

#	Article	IF	Citations
271	NLRC4 and TLR5 Each Contribute to Host Defense in Respiratory Melioidosis. PLoS Neglected Tropical Diseases, 2014, 8, e3178.	3.0	27
272	Zero tolerance for healthcare-associated MRSA bacteraemia: is it realistic?. Journal of Antimicrobial Chemotherapy, 2014, 69, 2238-2245.	3.0	27
273	Genomic Surveillance of Methicillin-resistant Staphylococcus aureus: A Mathematical Early Modeling Study of Cost-effectiveness. Clinical Infectious Diseases, 2020, 70, 1613-1619.	5.8	27
274	A Simple Scoring System to Differentiate between Relapse and Re-Infection in Patients with Recurrent Melioidosis. PLoS Neglected Tropical Diseases, 2008, 2, e327.	3.0	27
275	Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission. Nature Communications, 2022, 13, 751.	12.8	27
276	Evaluation of Immunoglobulin M (IgM) and IgG Rapid Cassette Test Kits for Diagnosis of Melioidosis in an Area of Endemicity. Journal of Clinical Microbiology, 2004, 42, 3435-3437.	3.9	26
277	Enzyme-Linked Immunosorbent Assay for the Diagnosis of Melioidosis: Better Than We Thought. Clinical Infectious Diseases, 2011, 52, 1024-1028.	5.8	26
278	Read and assembly metrics inconsequential for clinical utility of whole-genome sequencing in mapping outbreaks. Nature Biotechnology, 2013, 31, 592-594.	17.5	26
279	Neutrophil extracellular traps in the host defense against sepsis induced by Burkholderia pseudomallei (melioidosis). Intensive Care Medicine Experimental, 2014, 2, 21.	1.9	26
280	Community outbreaks of group A Streptococcus revealed by genome sequencing. Scientific Reports, 2017, 7, 8554.	3.3	26
281	Within-host evolution of Enterococcus faecium during longitudinal carriage and transition to bloodstream infection in immunocompromised patients. Genome Medicine, 2017, 9, 119.	8.2	26
282	Leptospira Species in Floodwater during the 2011 Floods in the Bangkok Metropolitan Region, Thailand. American Journal of Tropical Medicine and Hygiene, 2013, 89, 794-796.	1.4	25
283	Genomic surveillance reveals low prevalence of livestock-associated methicillin-resistant Staphylococcus aureus in the East of England. Scientific Reports, 2017, 7, 7406.	3.3	25
284	The role of viral genomics in understanding COVID-19 outbreaks in long-term care facilities. Lancet Microbe, The, 2022, 3, e151-e158.	7.3	25
285	Quantitation of B. Pseudomallei in clinical samples. American Journal of Tropical Medicine and Hygiene, 2007, 77, 812-3.	1.4	25
286	Effectiveness of a Simplified Method for Isolation of Burkholderia pseudomallei from Soil. Applied and Environmental Microbiology, 2012, 78, 876-877.	3.1	24
287	Trimethoprim/sulfamethoxazole resistance in clinical isolates of Burkholderia pseudomallei from Thailand. International Journal of Antimicrobial Agents, 2015, 45, 557-559.	2.5	24
288	Antimicrobial Disk Susceptibility Testing of Leptospira spp. Using Leptospira Vanaporn Wuthiekanun (LVW) Agar. American Journal of Tropical Medicine and Hygiene, 2015, 93, 241-243.	1.4	24

#	Article	IF	Citations
289	The dissemination of multidrug-resistant Enterobacter cloacae throughout the UK and Ireland. Nature Microbiology, 2016, 1, 16173.	13.3	24
290	Role of Alanine Racemase Mutations in Mycobacterium tuberculosis <scp>d</scp> -Cycloserine Resistance. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	24
291	Serological Evidence for Increased Human Exposure to Burkholderia pseudomallei following the Tsunami in Southern Thailand. Journal of Clinical Microbiology, 2006, 44, 239-240.	3.9	23
292	Simultaneous Infection with More than One Strain of <i>Burkholderia pseudomallei</i> Is Uncommon in Human Melioidosis. Journal of Clinical Microbiology, 2007, 45, 3830-3832.	3.9	23
293	Whole-genome sequencing of a quarter-century melioidosis outbreak in temperate Australia uncovers a region of low-prevalence endemicity. Microbial Genomics, 2016, 2, e000067.	2.0	23
294	Antibiotic-resistant sub-populations of the pathogenic bacterium Staphylococcus aureus confer population-wide resistance. Current Biology, 2002, 12, R686-R687.	3.9	22
295	Drug-resistance mechanisms and tuberculosis drugs. Lancet, The, 2015, 385, 305-307.	13.7	22
296	The composition and functional protein subsystems of the human nasal microbiome in granulomatosis with polyangiitis: a pilot study. Microbiome, 2019, 7, 137.	11.1	22
297	Contrasting patterns of longitudinal population dynamics and antimicrobial resistance mechanisms in two priority bacterial pathogens over 7Âyears in a single center. Genome Biology, 2019, 20, 184.	8.8	22
298	Methodology for Whole-Genome Sequencing of Methicillin-Resistant <i>Staphylococcus aureus</i> Isolates in a Routine Hospital Microbiology Laboratory. Journal of Clinical Microbiology, 2019, 57, .	3.9	22
299	The Emergence of Successful Streptococcus pyogenes Lineages through Convergent Pathways of Capsule Loss and Recombination Directing High Toxin Expression. MBio, 2019, 10, .	4.1	22
300	Presence of B. thailandensis and B. thailandensis expressing B. pseudomallei-like capsular polysaccharide in Thailand, and their associations with serological response to B. pseudomallei. PLoS Neglected Tropical Diseases, 2018, 12, e0006193.	3.0	22
301	Functional Blocking of Staphylococcus aureus Adhesins following Growth in Ex Vivo Media. Infection and Immunity, 2002, 70, 5339-5345.	2.2	21
302	Rapid Detection of Burkholderia pseudomallei in Blood Cultures Using a Monoclonal Antibody-Based Immunofluorescent Assay. American Journal of Tropical Medicine and Hygiene, 2013, 89, 971-972.	1.4	21
303	Detecting eukaryotic microbiota with single-cell sensitivity in human tissue. Microbiome, 2018, 6, 151.	11.1	21
304	Combined epidemiological and genomic analysis of nosocomial SARS-CoV-2 infection early in the pandemic and the role of unidentified cases in transmission. Clinical Microbiology and Infection, 2022, 28, 93-100.	6.0	21
305	Adherence of Staphylococcus aureus fibronectin binding protein A mutants: an investigation using optical tweezers. New Biotechnology, 2004, 21, 105-111.	2.7	20
306	Repeat Blood Culture Positive for B. pseudomallei Indicates an Increased Risk of Death from Melioidosis. American Journal of Tropical Medicine and Hygiene, 2011, 84, 858-861.	1.4	20

#	Article	IF	CITATIONS
307	<i>dfrA thyA</i> Double Deletion in <i>para</i> -Aminosalicylic Acid-Resistant Mycobacterium tuberculosis Beijing Strains. Antimicrobial Agents and Chemotherapy, 2016, 60, 3864-3867.	3.2	20
308	Multitarget Quantitative PCR Improves Detection and Predicts Cultivability of the Pathogen Burkholderia pseudomallei. Applied and Environmental Microbiology, 2017, 83, .	3.1	20
309	Revised Interpretation of the Hain Lifescience GenoType MTBC To Differentiate Mycobacterium canettii and Members of the Mycobacterium tuberculosis Complex. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	20
310	Genomic epidemiology of COVID-19 in care homes in the east of England. ELife, 2021, 10, .	6.0	20
311	Genomic survey of Clostridium difficile reservoirs in the East of England implicates environmental contamination of wastewater treatment plants by clinical lineages. Microbial Genomics, 2018, 4, .	2.0	19
312	Genetic variation associated with infection and the environment in the accidental pathogen Burkholderia pseudomallei. Communications Biology, 2019, 2, 428.	4.4	19
313	Population genetic structuring of methicillin-resistant Staphylococcus aureus clone EMRSA-15 within UK reflects patient referral patterns. Microbial Genomics, 2017, 3, e000113.	2.0	19
314	Convergent evolution and topologically disruptive polymorphisms among multidrug-resistant tuberculosis in Peru. PLoS ONE, 2017, 12, e0189838.	2.5	19
315	Prospective genomic surveillance of methicillin-resistant Staphylococcus aureus (MRSA) associated with bloodstream infection, England, 1 October 2012 to 30 September 2013. Eurosurveillance, 2019, 24, .	7.0	19
316	Tracking SARS-CoV-2 Mutations & Description of the COG-UK-Mutation Explorer. Virus Evolution, 2022, 8, veac023.	4.9	19
317	Impact of infectious diseases consultation on the management of Staphylococcus aureus bacteraemia in children. BMJ Open, 2014, 4, e004659-e004659.	1.9	18
318	Public Awareness of Melioidosis in Thailand and Potential Use of Video Clips as Educational Tools. PLoS ONE, 2015, 10, e0121311.	2.5	18
319	Effect of temperature on Burkholderia pseudomallei growth, proteomic changes, motility and resistance to stress environments. Scientific Reports, 2018, 8, 9167.	3.3	18
320	Harnessing alternative sources of antimicrobial resistance data to support surveillance in low-resource settings. Journal of Antimicrobial Chemotherapy, 2019, 74, 541-546.	3.0	18
321	Addition of Trimethoprim-Sulfamethoxazole to Ceftazidime during Parenteral Treatment of Melioidosis Is Not Associated with a Long-Term Outcome Benefit. Clinical Infectious Diseases, 2007, 45, 521-523.	5.8	17
322	Surviving sepsis in developing countries. Critical Care Medicine, 2008, 36, 2487.	0.9	17
323	Expression and Function of Macrophage Migration Inhibitory Factor (MIF) in Melioidosis. PLoS Neglected Tropical Diseases, 2010, 4, e605.	3.0	17
324	Prevalence of Melioidosis in Patients with Suspected Pulmonary Tuberculosis and Sputum Smear Negative for Acid-Fast Bacilli in Northeast Thailand. American Journal of Tropical Medicine and Hygiene, 2013, 89, 983-985.	1.4	17

#	Article	IF	CITATIONS
325	Consequences of <i>whiB7</i> (<i>Rv3197A</i>) Mutations in Beijing Genotype Isolates of the Mycobacterium tuberculosis Complex. Antimicrobial Agents and Chemotherapy, 2013, 57, 3461-3461.	3.2	17
326	Patterns of Organ Involvement in Recurrent Melioidosis. American Journal of Tropical Medicine and Hygiene, 2009, 81, 335-337.	1.4	17
327	Prospective clinical evaluation of the accuracy of 16S rRNA real-time PCR assay for the diagnosis of melioidosis. American Journal of Tropical Medicine and Hygiene, 2007, 77, 814-7.	1.4	17
328	Role of Selective and Nonselective Media for Isolation of Burkholderia pseudomallei from Throat Swabs of Patients with Melioidosis. Journal of Clinical Microbiology, 2006, 44, 2316-2316.	3.9	16
329	Antimicrobial Drug–Selection Markers for <i>Burkholderia pseudomallei</i> and <i>B. mallei</i> Emerging Infectious Diseases, 2008, 14, 1689-1692.	4.3	16
330	Diagnostic and Treatment Difficulties of Pyelonephritis in Pregnancy in Resource-Limited Settings. American Journal of Tropical Medicine and Hygiene, 2010, 83, 1322-1329.	1.4	16
331	Improved culture-based detection and quantification of Burkholderia pseudomallei from soil. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2011, 105, 346-351.	1.8	16
332	PBP2a substitutions linked to ceftaroline resistance in MRSA isolates from the UK: Table 1 Journal of Antimicrobial Chemotherapy, 2016, 71, 268-269.	3.0	16
333	Comparison of 2 chromogenic media for the detection of extended-spectrum \hat{l}^2 -lactamase producing Enterobacteriaceae stool carriage in nursing home residents. Diagnostic Microbiology and Infectious Disease, 2016, 84, 181-183.	1.8	16
334	<i>Burkholderia</i> , <i>Stenotrophomonas</i> , <i>Ralstonia</i> , <i>Cupriavidus</i> , <i>Pandoraea</i> , <i>Brevundimonas</i> , <i>Comamonas</i> , <i>Delftia</i> , and <i>Acidovorax</i> , , 791-812.		16
335	PULSED-FIELD GEL ELECTROPHORESIS AS A DISCRIMINATORY TYPING TECHNIQUE FOR THE BIOTHREAT AGENT BURKHOLDERIA MALLEI. American Journal of Tropical Medicine and Hygiene, 2006, 74, 345-347.	1.4	16
336	Short report: disease severity and outcome of melioidosis in HIV coinfected individuals. American Journal of Tropical Medicine and Hygiene, 2005, 73, 1165-6.	1.4	16
337	Prospective observational study of the frequency and features of intra-abdominal abscesses in patients with melioidosis in northeast Thailand. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2012, 106, 629-631.	1.8	15
338	Molecular Confirmation of Co-Infection by Pathogenic Leptospira spp. and Orientia tsutsugamushi in Patients with Acute Febrile Illness in Thailand. American Journal of Tropical Medicine and Hygiene, 2013, 89, 797-799.	1.4	15
339	Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin. Antimicrobial Agents and Chemotherapy, 2016, 60, 5232-5237.	3.2	15
340	Short report: Melioidosis in Myanmar: forgotten but not gone?. American Journal of Tropical Medicine and Hygiene, 2006, 75, 945-6.	1.4	15
341	Pharmacokinetic and pharmacodynamic assessment of co-amoxiclav in the treatment of melioidosis. Journal of Antimicrobial Chemotherapy, 2006, 58, 1215-1220.	3.0	14
342	Molecular typing of Leptospiraspp. based on putative O-antigen polymerase gene (wzy), the benefit over 16S rRNA gene sequence. FEMS Microbiology Letters, 2007, 271, 170-179.	1.8	14

#	Article	IF	Citations
343	Genome-Based Analysis of Enterococcus faecium Bacteremia Associated with Recurrent and Mixed-Strain Infection. Journal of Clinical Microbiology, 2018, 56, .	3.9	14
344	Isolation and comparative genomics of Mycobacterium tuberculosis isolates from cattle and their attendants in South India. Scientific Reports, 2019, 9, 17892.	3.3	14
345	Applying prospective genomic surveillance to support investigation of hospital-onset COVID-19. Lancet Infectious Diseases, The, 2021, 21, 916-917.	9.1	14
346	Automating the Generation of Antimicrobial Resistance Surveillance Reports: Proof-of-Concept Study Involving Seven Hospitals in Seven Countries. Journal of Medical Internet Research, 2020, 22, e19762.	4.3	14
347	Presence of Burkholderia pseudomallei in Soil and Paddy Rice Water in a Rice Field in Northeast Thailand, but Not in Air and Rainwater. American Journal of Tropical Medicine and Hygiene, 2017, 97, 1702-1705.	1.4	14
348	Variable presentation of neurological melioidosis in Northeast Thailand. American Journal of Tropical Medicine and Hygiene, 2007, 77, 118-20.	1.4	14
349	Osteopontin Impairs Host Defense during Established Gram-Negative Sepsis Caused by Burkholderia pseudomallei (Melioidosis). PLoS Neglected Tropical Diseases, 2010, 4, e806.	3.0	13
350	Diabetes does not influence activation of coagulation, fibrinolysis or anticoagulant pathways in Gram-negative sepsis (melioidosis). Thrombosis and Haemostasis, 2011, 106, 1139-1148.	3.4	13
351	Expression and Function of Transforming Growth Factor \hat{l}^2 in Melioidosis. Infection and Immunity, 2012, 80, 1853-1857.	2.2	13
352	Typhoid Fever among Hospitalized Febrile Children in Siem Reap, Cambodia. Journal of Tropical Pediatrics, 2012, 58, 68-70.	1.5	13
353	<i>Burkholderia pseudomallei</i> in Water Supplies, Southern Thailand. Emerging Infectious Diseases, 2014, 20, 1947-1949.	4.3	13
354	The Role of NOD2 in Murine and Human Melioidosis. Journal of Immunology, 2014, 192, 300-307.	0.8	13
355	Laboratory informatics capacity for effective antimicrobial resistance surveillance in resource-limited settings. Lancet Infectious Diseases, The, 2021, 21, e170-e174.	9.1	13
356	THE ROLE AND SIGNIFICANCE OF SPUTUM CULTURES IN THE DIAGNOSIS OF MELIOIDOSIS. American Journal of Tropical Medicine and Hygiene, 2005, 73, 657-661.	1.4	13
357	The Use of Positive Serological Tests as Evidence of Exposure to Burkholderia pseudomallei. American Journal of Tropical Medicine and Hygiene, 2011, 84, 1021-1022.	1.4	12
358	Impact of low blood culture usage on rates of antimicrobial resistance. Journal of Infection, 2021, 82, 355-362.	3.3	12
359	Streptococcus bovimastitidis sp. nov., isolated from a dairy cow with mastitis. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 21-27.	1.7	12
360	Whole-Genome Sequencing of a <i>Mycobacterium orygis</i> Strain Isolated from Cattle in Chennai, India. Microbiology Resource Announcements, 2019, 8, .	0.6	12

#	Article	IF	Citations
361	A2B-COVID: A Tool for Rapidly Evaluating Potential SARS-CoV-2 Transmission Events. Molecular Biology and Evolution, 2022, 39, .	8.9	12
362	Application of Polysaccharide Microarray Technology for the Serodiagnosis of <i>Burkholderia pseudomallei </i> Infection (Melioidosis) in Humans. Journal of Carbohydrate Chemistry, 2008, 27, 32-40.	1.1	11
363	Genetic diversity within Mycobacterium tuberculosis complex impacts on the accuracy of genotypic pyrazinamide drug-susceptibility assay. Tuberculosis, 2014, 94, 451-453.	1.9	11
364	Investigation of a Cluster of Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Transmission in a Community Setting. Clinical Infectious Diseases, 2017, 65, 2069-2077.	5.8	11
365	Consensus guidelines for dosing of amoxicillin-clavulanate in melioidosis. American Journal of Tropical Medicine and Hygiene, 2008, 78, 208-9.	1.4	11
366	Gastrointestinal tract involvement in melioidosis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2017, 111, 185-187.	1.8	10
367	Evaluation of a fully automated bioinformatics tool to predict antibiotic resistance from MRSA genomes. Journal of Antimicrobial Chemotherapy, 2020, 75, 1117-1122.	3.0	10
368	Whole-genome sequencing to investigate a non-clonal melioidosis cluster on a remote Australian island. Microbial Genomics, 2017, 3, e000117.	2.0	10
369	Co-evolutionary Signals Identify <i>Burkholderia pseudomallei</i> Survival Strategies in a Hostile Environment. Molecular Biology and Evolution, 2022, 39, .	8.9	10
370	Genomic assessment of quarantine measures to prevent SARS-CoV-2 importation and transmission. Nature Communications, 2022, 13, 1012.	12.8	10
371	Significant variability exists in the cytotoxicity of global methicillin-resistant Staphylococcus aureus lineages. Microbiology (United Kingdom), 2021, 167, .	1.8	10
372	Mycobacterium tuberculosis Lineages Associated with Mutations and Drug Resistance in Isolates from India. Microbiology Spectrum, 2022, 10, e0159421.	3.0	10
373	Pilot Evaluation of a Fully Automated Bioinformatics System for Analysis of Methicillin-Resistant Staphylococcus aureus Genomes and Detection of Outbreaks. Journal of Clinical Microbiology, 2019, 57, .	3.9	9
374	New Insights from the 7th World Melioidosis Congress 2013. Emerging Infectious Diseases, 2014, 20, .	4.3	9
375	Identification of differentially expressed proteins from Burkholderia pseudomallei isolated during primary and relapsing melioidosis. Microbes and Infection, 2012, 14, 335-340.	1.9	8
376	Comment on: Characterization of the embB gene in Mycobacterium tuberculosis isolates from Barcelona and rapid detection of main mutations related to ethambutol resistance using a low-density DNA array. Journal of Antimicrobial Chemotherapy, 2014, 69, 2298-2299.	3.0	8
377	Rapid sequencing of MRSA direct from clinical plates in a routine microbiology laboratory. Journal of Antimicrobial Chemotherapy, 2019, 74, 2153-2156.	3.0	8
378	Nasal carriage of <i>Staphylococcus pseudintermedius</i> in patients with granulomatosis with polyangiitis. Rheumatology, 2019, 58, 548-550.	1.9	8

#	Article	IF	CITATIONS
379	Association between bacterial homoplastic variants and radiological pathology in tuberculosis. Thorax, 2020, 75, 584-591.	5.6	8
380	Horses for courses? Assessing the potential value of a surrogate, pointâ€ofâ€care test for SARSâ€CoVâ€2 epidemic control. Influenza and Other Respiratory Viruses, 2021, 15, 3-6.	3.4	8
381	Fatal Melioidosis in Goats in Bangkok, Thailand. American Journal of Tropical Medicine and Hygiene, 2014, 91, 287-290.	1.4	7
382	Comparison of two chromogenic media for the detection of vancomycin-resistant enterococcal carriage by nursing home residents. Diagnostic Microbiology and Infectious Disease, 2016, 85, 409-412.	1.8	7
383	Patient Characteristics, Management, and Predictors of Outcome from Severe Community-Onset Staphylococcal Sepsis in Northeast Thailand: A Prospective Multicenter Study. American Journal of Tropical Medicine and Hygiene, 2017, 96, 16-0606.	1.4	7
384	Increased Von Willebrand factor, decreased ADAMTS13 and thrombocytopenia in melioidosis. PLoS Neglected Tropical Diseases, 2017, 11, e0005468.	3.0	7
385	Staphylococcus aureus., 2006,, 73-98.		6
386	Whole Genome Sequencing of a Methicillin-Resistant Staphylococcus aureus Pseudo-Outbreak in a Professional Football Team. Open Forum Infectious Diseases, 2014, 1, ofu096.	0.9	6
387	Cost-effectiveness analysis of parenteral antimicrobials for acute melioidosis in Thailand: FigureÂ1 Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 416-418.	1.8	6
388	A review of published spoligotype data indicates the diversity of Mycobacterium tuberculosis from India is under-represented in global databases. Infection, Genetics and Evolution, 2020, 78, 104072.	2.3	6
389	Naturally occurring polymorphisms in the virulence regulator Rsp modulate Staphylococcus aureus survival in blood and antibiotic susceptibility. Microbiology (United Kingdom), 2018, 164, 1189-1195.	1.8	6
390	The role and significance of sputum cultures in the diagnosis of melioidosis. American Journal of Tropical Medicine and Hygiene, 2005, 73, 657-61.	1.4	6
391	Pulsed-field gel electrophoresis as a discriminatory typing technique for the biothreat agent burkholderia mallei. American Journal of Tropical Medicine and Hygiene, 2006, 74, 345-7.	1.4	6
392	Microbial sequences benefit health now. Nature, 2011, 471, 578-578.	27.8	5
393	Moving pathogen genomics out of the lab and into the clinic: what will it take?. Genome Medicine, 2015, 7, 132.	8.2	5
394	Public perceptions of bacterial whole-genome sequencing for tuberculosis. Trends in Genetics, 2015, 31, 58-60.	6.7	5
395	Analysis of mutations in pncA reveals non-overlapping patterns among various lineages of Mycobacterium tuberculosis. Scientific Reports, 2018, 8, 4628.	3.3	5
396	Genome Sequencing of Polydrug-, Multidrug-, and Extensively Drug-Resistant Mycobacterium tuberculosis Strains from South India. Microbiology Resource Announcements, 2019, 8, .	0.6	5

#	Article	IF	CITATIONS
397	Are commercial providers a viable option for clinical bacterial sequencing?. Microbial Genomics, 2018, 4, .	2.0	5
398	Surveillance and Epidemiology of Drug Resistant Infections Consortium (SEDRIC): Supporting the transition from strategy to action. Wellcome Open Research, 2018, 3, 59.	1.8	5
399	Miniaturised broth microdilution for simplified antibiotic susceptibility testing of Gram negative clinical isolates using microcapillary devices. Analyst, The, 2022, 147, 3558-3569.	3.5	5
400	Local Persistence of Novel MRSA Lineage after Hospital Ward Outbreak, Cambridge, UK, 2011–2013. Emerging Infectious Diseases, 2016, 22, 1658-1659.	4.3	4
401	Setting priorities for patient-centered surveillance of drug-resistant infections. International Journal of Infectious Diseases, 2020, 97, 60-65.	3.3	4
402	Defining metrics for whole-genome sequence analysis of MRSA in clinical practice. Microbial Genomics, 2020, 6, .	2.0	4
403	Common TLR1 Genetic Variation Is Not Associated with Death from Melioidosis, a Common Cause of Sepsis in Rural Thailand. PLoS ONE, 2014, 9, e83285.	2.5	4
404	PowerBacGWAS: a computational pipeline to perform power calculations for bacterial genome-wide association studies. Communications Biology, 2022, 5, 266.	4.4	4
405	Microbial sequencing to improve individual and population health. Genome Medicine, 2014, 6, 103.	8.2	3
406	Prospective Surveillance and Rapid Whole-Genome Sequencing Detects Two Unsuspected Outbreaks of Carbapenemase-Producing Klebsiella pneumoniae in a UK Teaching Hospital. Open Forum Infectious Diseases, 2017, 4, S43-S44.	0.9	3
407	â€~Antibiotic footprint' as a communication tool to aid reduction of antibiotic consumption—authors' response. Journal of Antimicrobial Chemotherapy, 2019, 74, 3406-3408.	3.0	3
408	Predictive Validity of the qSOFA Score for Sepsis in Adults with Community-Onset Staphylococcal Infection in Thailand. Journal of Clinical Medicine, 2019, 8, 1908.	2.4	3
409	A common protocol for the simultaneous processing of multiple clinically relevant bacterial species for whole genome sequencing. Scientific Reports, 2021, 11, 193.	3.3	3
410	Validation of self-administered nasal swabs and postage for the isolation of Staphylococcus aureus. Journal of Medical Microbiology, 2016, 65, 1434-1437.	1.8	3
411	Multiple phylogenetically-diverse, differentially-virulent Burkholderia pseudomallei isolated from a single soil sample collected in Thailand. PLoS Neglected Tropical Diseases, 2022, 16, e0010172.	3.0	3
412	In vitro motility of a population of clinical Burkholderia pseudomallei isolates. Journal of the Medical Association of Thailand = Chotmaihet Thangphaet, 2006, 89, 1506-10.	0.1	3
413	Next-generation pathogen genomics. Genome Biology, 2014, 15, 528.	8.8	2
414	Melioidosis. , 2017, , 1073-1077.e1.		2

#	Article	IF	Citations
415	â€~Antibiotic footprint' as a communication tool to aid reduction of antibiotic consumption—authors' response. Journal of Antimicrobial Chemotherapy, 2019, 74, 2823-2823.	3.0	2
416	The prevalence and implications of single nucleotide polymorphisms in genes encoding the RNA polymerase of clinical isolates of Staphylococcus aureus. MicrobiologyOpen, 2020, 9, e1058.	3.0	2
417	Surveillance and Epidemiology of Drug Resistant Infections Consortium (SEDRIC): Supporting the transition from strategy to action. Wellcome Open Research, 0, 3, 59.	1.8	2
418	Invasive Erysipelothrix rhusiopathiae infection in northeast Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 2007, 38, 478-81.	1.0	2
419	Melioidosis., 2011,, 219-222.		1
420	Reply to Dookie et al., "Whole-Genome Sequencing To Guide the Selection of Treatment for Drug-Resistant Tuberculosis― Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	1
421	â€~Antibiotic footprint' as a communication tool to aid reduction of antibiotic consumption—authors' response. Journal of Antimicrobial Chemotherapy, 2020, 75, 785-786.	3.0	1
422	Antibody response to SARS-CoV-2 infection in humans: A systematic review. , 2020, 15, e0244126.		1
423	In Response. American Journal of Tropical Medicine and Hygiene, 2014, 90, 386-386.	1.4	0
424	The Dynamics of Staphylococcus aureus carriage and Comparisons by Age in Two Studies of an Investigational S aureus 4-Antigen Vaccine (SA4Ag). Open Forum Infectious Diseases, 2016, 3, .	0.9	0
425	Melioidosis. , 2010, , 1213-1217.		0
426	Antibody response to SARS-CoV-2 infection in humans: A systematic review., 2020, 15, e0244126.		0
427	Antibody response to SARS-CoV-2 infection in humans: A systematic review., 2020, 15, e0244126.		0
428	Antibody response to SARS-CoV-2 infection in humans: A systematic review., 2020, 15, e0244126.		0