Weian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3217703/publications.pdf Version: 2024-02-01

Μείαν Ζηάνο

#	Article	IF	CITATIONS
1	A carboxylatopillar[5]arene-based pH-triggering supramolecular photosensitizer for enhanced photodynamic antibacterial efficacy. Chemical Communications, 2022, , .	4.1	5
2	Oxygenâ€Carrying and Antibacterial Fluorinated Nanoâ€Hydroxyapatite Incorporated Hydrogels for Enhanced Bone Regeneration. Advanced Healthcare Materials, 2022, 11, e2102540.	7.6	23
3	Regulating the bacterial oxygen microenvironment via a perfluorocarbon-conjugated bacteriochlorin for enhanced photodynamic antibacterial efficacy. Acta Biomaterialia, 2022, 142, 242-252.	8.3	20
4	A multifunctional platform with metallacycle-based star polymers and gold nanorods for combinational photochemotherapy. Materials Today Advances, 2022, 14, 100229.	5.2	3
5	Pillar[5]areneâ€Based Acidâ€Triggered Supramolecular Porphyrin Photosensitizer for Combating Bacterial Infections and Biofilm Dispersion. Advanced Healthcare Materials, 2022, 11, e2102015.	7.6	26
6	A hierarchical supramolecular nanozyme platform for programming tumor-specific PDT and catalytic therapy. Chemical Engineering Journal, 2022, 444, 136164.	12.7	9
7	An acid-triggered BODIPY-based photosensitizer for enhanced photodynamic antibacterial efficacy. Biomaterials Science, 2022, 10, 4235-4242.	5.4	9
8	Construction of a pH-responsive, ultralow-dose triptolide nanomedicine for safe rheumatoid arthritis therapy. Acta Biomaterialia, 2021, 121, 541-553.	8.3	45
9	An ultra-stable bio-inspired bacteriochlorin analogue for hypoxia-tolerant photodynamic therapy. Chemical Science, 2021, 12, 1295-1301.	7.4	32
10	An acid-triggered porphyrin-based block copolymer for enhanced photodynamic antibacterial efficacy. Science China Chemistry, 2021, 64, 459-466.	8.2	25
11	Boosting cancer therapy efficiency <i>via</i> photoinduced radical production. Chemical Science, 2021, 12, 9500-9505.	7.4	8
12	An Antifouling and Antimicrobial Zwitterionic Nanocomposite Hydrogel Dressing for Enhanced Wound Healing. ACS Biomaterials Science and Engineering, 2021, 7, 1621-1630.	5.2	42
13	Zeolitic Imidazolate Framework Platform for Combinational Starvation Therapy and Oxygen Self-Sufficient Photodynamic Therapy against a Hypoxia Tumor. ACS Applied Bio Materials, 2021, 4, 4413-4421.	4.6	17
14	A hybrid erbium(III)–bacteriochlorin near-infrared probe for multiplexed biomedical imaging. Nature Materials, 2021, 20, 1571-1578.	27.5	138
15	NIR-absorbing superoxide radical and hyperthermia photogenerator via twisted donor-acceptor-donor molecular rotation for hypoxic tumor eradication. Science China Materials, 2021, 64, 3101.	6.3	9
16	Mitochondria-targeting and ROS-sensitive smart nanoscale supramolecular organic framework for combinational amplified photodynamic therapy and chemotherapy. Acta Biomaterialia, 2021, 130, 447-459.	8.3	32
17	Janus macromolecular brushes for synergistic cascade-amplified photodynamic therapy and enhanced chemotherapy. Acta Biomaterialia, 2020, 101, 495-506.	8.3	42
18	In Situ Catalytic Reaction for Solving the Aggregation of Hydrophobic Photosensitizers in Tumor. ACS Applied Materials & Interfaces, 2020, 12, 5624-5632.	8.0	35

#	Article	IF	CITATIONS
19	Sustained protein therapeutics enabled by self-healing nanocomposite hydrogels for non-invasive bone regeneration. Biomaterials Science, 2020, 8, 682-693.	5.4	30
20	Enhanced photodynamic therapy based on an amphiphilic branched copolymer with pendant vinyl groups for simultaneous GSH depletion and Ce6 release. Journal of Materials Chemistry B, 2020, 8, 478-483.	5.8	25
21	Selfâ€Amplified Photodynamic Therapy through the ¹ O ₂ â€Mediated Internalization of Photosensitizers from a Ppaâ€Bearing Block Copolymer. Angewandte Chemie, 2020, 132, 3740-3746.	2.0	11
22	Selfâ€Amplified Photodynamic Therapy through the ¹ O ₂ â€Mediated Internalization of Photosensitizers from a Ppaâ€Bearing Block Copolymer. Angewandte Chemie - International Edition, 2020, 59, 3711-3717.	13.8	62
23	Conjugated BODIPY Oligomers with Controllable Near-Infrared Absorptions as Promising Phototheranostic Agents through Excited-State Intramolecular Rotations. ACS Applied Materials & Interfaces, 2020, 12, 47208-47219.	8.0	33
24	Modulation of the lifespan of <i>C. elegans</i> by the controlled release of nitric oxide. Chemical Science, 2020, 11, 8785-8792.	7.4	5
25	Enhanced photodynamic therapy through supramolecular photosensitizers with an adamantyl-functionalized porphyrin and a cyclodextrin dimer. Chemical Communications, 2020, 56, 11134-11137.	4.1	17
26	Inhibiting Radiative Transition-Mediated Multifunctional Polymeric Nanoplatforms for Highly Efficient Tumor Phototherapeutics. ACS Applied Materials & Interfaces, 2020, 12, 44523-44533.	8.0	15
27	Pillar[5]arene-Based Switched Supramolecular Photosensitizer for Self-Amplified and pH-Activated Photodynamic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 41038-41046.	8.0	35
28	Single-wavelength phototheranostics for colon cancer <i>via</i> the thiolytic reaction. Nanoscale, 2020, 12, 12165-12171.	5.6	5
29	Waterâ€Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 15844-15848.	13.8	76
30	Water-soluble hyperbranched polyglycerol photosensitizer for enhanced photodynamic therapy. Polymer Chemistry, 2020, 11, 3913-3921.	3.9	3
31	Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coordination Chemistry Reviews, 2020, 420, 213410.	18.8	191
32	Fluorinated-functionalized hyaluronic acid nanoparticles for enhanced photodynamic therapy of ocular choroidal melanoma by ameliorating hypoxia. Carbohydrate Polymers, 2020, 237, 116119.	10.2	47
33	Linear Alternating Supramolecular Photosensitizer for Enhanced Photodynamic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 32352-32359.	8.0	33
34	Reconstructing the intracellular pH microenvironment for enhancing photodynamic therapy. Materials Horizons, 2020, 7, 1180-1185.	12.2	36
35	Hydrophilic polyphosphoester-conjugated fluorinated chlorin as an entirely biodegradable nano-photosensitizer for reliable and efficient photodynamic therapy. Chemical Communications, 2020, 56, 2415-2418.	4.1	15
36	Polyhedral Oligomeric Silsesquioxane-Incorporated Gelatin Hydrogel Promotes Angiogenesis during Vascularized Bone Regeneration. ACS Applied Materials & Interfaces, 2020, 12, 22410-22425.	8.0	64

#	Article	IF	CITATIONS
37	A super-stretchable, self-healing and injectable supramolecular hydrogel constructed by a host–guest crosslinker. Biomaterials Science, 2020, 8, 3359-3369.	5.4	32
38	Photo-controlled RAFT polymerization mediated by organic/inorganic hybrid photoredox catalysts: enhanced catalytic efficiency. Polymer Chemistry, 2020, 11, 3188-3194.	3.9	7
39	Construction of Layered B ₃ N ₃ -Doped Graphene Sheets from an Acetylenic Compound Containing B ₃ N ₃ by a Semisynthetic Strategy. ACS Applied Materials & Interfaces, 2019, 11, 33245-33253.	8.0	7
40	Multistep Consolidated Phototherapy Mediated by a NIR-Activated Photosensitizer. ACS Applied Materials & Interfaces, 2019, 11, 33628-33636.	8.0	25
41	Long-Term Bone Regeneration Enabled by a Polyhedral Oligomeric Silsesquioxane (POSS)-Enhanced Biodegradable Hydrogel. ACS Biomaterials Science and Engineering, 2019, 5, 4612-4623.	5.2	33
42	Fabrication of a Dualâ€&timuliâ€Responsive Supramolecular Micelle from a Pillar[5]areneâ€Based Supramolecular Diblock Copolymer for Photodynamic Therapy. Macromolecular Rapid Communications, 2019, 40, 1900240.	3.9	14
43	NIR-Triggered Multifunctional and Degradable Nanoplatform Based on an ROS-Sensitive Block Copolymer for Imaging-Guided Chemo-Phototherapy. Biomacromolecules, 2019, 20, 4218-4229.	5.4	33
44	GSH-Activatable NIR Nanoplatform with Mitochondria Targeting for Enhancing Tumor-Specific Therapy. ACS Applied Materials & amp; Interfaces, 2019, 11, 44961-44969.	8.0	61
45	Sensitization of Hypoxic Tumor to Photodynamic Therapy via Oxygen Self-Supply of Fluorinated Photosensitizers. Biomacromolecules, 2019, 20, 4563-4573.	5.4	41
46	Acid-Triggered Nanoexpansion Polymeric Micelles for Enhanced Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 33697-33705.	8.0	54
47	NIR-Activated "OFF/ON―Photodynamic Therapy by a Hybrid Nanoplatform with Upper Critical Solution Temperature Block Copolymers and Gold Nanorods. Biomacromolecules, 2019, 20, 3873-3883.	5.4	37
48	NIR-Triggered "OFF/ON―Photodynamic Therapy through a Upper Critical Solution Temperature Block Copolymer. ACS Applied Materials & Interfaces, 2019, 11, 37121-37129.	8.0	19
49	A Redox Stimulation-Activated Amphiphile for Enhanced Photodynamic Therapy. Biomacromolecules, 2019, 20, 2796-2808.	5.4	25
50	<i>In situ</i> bone regeneration enabled by a biodegradable hybrid double-network hydrogel. Biomaterials Science, 2019, 7, 3266-3276.	5.4	85
51	Far-Red Light-Induced Reversible Addition–Fragmentation Chain Transfer Polymerization Using a Man-Made Bacteriochlorin. ACS Macro Letters, 2019, 8, 616-622.	4.8	48
52	Hyaluronic acid conjugated polydopamine functionalized mesoporous silica nanoparticles for synergistic targeted chemo-photothermal therapy. Nanoscale, 2019, 11, 11012-11024.	5.6	74
53	Synthesis, self-assembly and applications of functional polymers based on porphyrins. Progress in Polymer Science, 2019, 95, 65-117.	24.7	117
54	An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy against hypoxic tumors. Chemical Science, 2019, 10, 5766-5772.	7.4	91

#	Article	IF	CITATIONS
55	NIR-Activated Polymeric Nanoplatform with Upper Critical Solution Temperature for Image-Guided Synergistic Photothermal Therapy and Chemotherapy. Biomacromolecules, 2019, 20, 2338-2349.	5.4	42
56	Enhanced proliferation and differentiation of retinal progenitor cells through a self-healing injectable hydrogel. Biomaterials Science, 2019, 7, 2335-2347.	5.4	36
57	Combating Multidrug Resistance through an NIR-Triggered Cyanine-Containing Amphiphilic Block Copolymer. ACS Applied Bio Materials, 2019, 2, 1862-1874.	4.6	6
58	Stable soft cubic superstructure enabled by hydrogen-bond complex functionalized polymer/liquid crystal system. Journal of Materials Chemistry C, 2019, 7, 3952-3957.	5.5	5
59	Mussel-inspired injectable hydrogel and its counterpart for actuating proliferation and neuronal differentiation of retinal progenitor cells. Biomaterials, 2019, 194, 57-72.	11.4	68
60	Ultrasensitive redox-responsive porphyrin-based polymeric nanoparticles for enhanced photodynamic therapy. European Polymer Journal, 2019, 110, 344-354.	5.4	16
61	Promoted Proliferation of Hematopoietic Stem Cells Enabled by a Hyaluronic Acid/Carbon Nanotubes Antioxidant Hydrogel. Macromolecular Materials and Engineering, 2019, 304, 1800630.	3.6	11
62	Precise Self-Assembly and Controlled Catalysis of Thermoresponsive Core–Satellite Multicomponent Hybrid Nanoparticles. Langmuir, 2019, 35, 266-275.	3.5	24
63	Porphyrin-functionalized coordination star polymers and their potential applications in photodynamic therapy. Polymer Chemistry, 2019, 10, 6116-6121.	3.9	12
64	Synthesis of POSS-functionalized liquid crystalline block copolymers <i>via</i> RAFT polymerization for stabilizing blue phase helical soft superstructures. Polymer Chemistry, 2018, 9, 2101-2108.	3.9	10
65	Lightâ€Driven Reversible Transformation between Selfâ€Organized Simple Cubic Lattice and Helical Superstructure Enabled by a Molecular Switch Functionalized Nanocage. Advanced Materials, 2018, 30, e1800237.	21.0	57
66	POSS-enhanced thermosensitive hybrid hydrogels for cell adhesion and detachment. RSC Advances, 2018, 8, 13813-13819.	3.6	18
67	Sustained release of stem cell factor in a double network hydrogel for ex vivo culture of cord bloodâ€derived <scp>CD</scp> 34 ⁺ cells. Cell Proliferation, 2018, 51, e12407.	5.3	12
68	Adaptive Materials: Light-Driven Reversible Transformation between Self-Organized Simple Cubic Lattice and Helical Superstructure Enabled by a Molecular Switch Functionalized Nanocage (Adv.) Tj ETQq0 0 0 i	rgB Σ1¦.O ver	locta 10 Tf 50
69	Enhancing the Efficacy of Photodynamic Therapy through a Porphyrin/POSS Alternating Copolymer. Angewandte Chemie, 2018, 130, 16592-16596.	2.0	10
70	Enhancing the Efficacy of Photodynamic Therapy through a Porphyrin/POSS Alternating Copolymer. Angewandte Chemie - International Edition, 2018, 57, 16354-16358.	13.8	94
71	Enhancing the efficacy of photodynamic therapy (PDT) <i>via</i> water-soluble pillar[5]arene-based supramolecular complexes. Chemical Communications, 2018, 54, 7629-7632.	4.1	40
72	A mitochondria-targeting supramolecular photosensitizer based on pillar[5]arene for photodynamic therapy. Chemical Communications, 2017, 53, 3126-3129.	4.1	66

#	Article	IF	CITATIONS
73	Photocontrollable Supramolecular Selfâ€Assembly of a Porphyrin Derivative that Contains a Polyhedral Oligomeric Silsesquioxane (POSS). Asian Journal of Organic Chemistry, 2017, 6, 1034-1042.	2.7	5
74	Unimolecular micelles from POSS-based star-shaped block copolymers for photodynamic therapy. Polymer, 2017, 118, 268-279.	3.8	31
75	A hyaluronic acid/graphene oxide hydrogel for enhanced ex vivo expansion of cord blood-derived CD34+ cells. Materials Letters, 2017, 205, 253-256.	2.6	6
76	Biomimetic Macroporous PCL Scaffolds for Ex Vivo Expansion of Cord Bloodâ€Derived CD34 ⁺ Cells with Feeder Cells Support. Macromolecular Bioscience, 2017, 17, 1700054.	4.1	11
77	Intracellular GSH-activated galactoside photosensitizers for targeted photodynamic therapy and chemotherapy. Biomaterials Science, 2017, 5, 274-284.	5.4	29
78	Enhancing Photochemical Internalization of DOX through a Porphyrin-based Amphiphilic Block Copolymer. Biomacromolecules, 2017, 18, 3992-4001.	5.4	43
79	Redox-responsive supramolecular amphiphiles based on a pillar[5]arene for enhanced photodynamic therapy. Polymer Chemistry, 2016, 7, 3268-3276.	3.9	56
80	Construction of reduction-responsive photosensitizers based on amphiphilic block copolymers and their application for photodynamic therapy. Polymer, 2016, 97, 323-334.	3.8	24
81	Recent advances in organic–inorganic well-defined hybrid polymers using controlled living radical polymerization techniques. Polymer Chemistry, 2016, 7, 3950-3976.	3.9	49
82	Encapsulated feeder cells within alginate beads for ex vivo expansion of cord blood-derived CD34 ⁺ cells. Biomaterials Science, 2016, 4, 1441-1453.	5.4	18
83	Light-controllable toxicity recovery from selenium-based amphiphiles. Chemical Communications, 2016, 52, 14208-14211.	4.1	8
84	Hollow Polymeric Capsules from POSS-Based Block Copolymer for Photodynamic Therapy. Macromolecules, 2016, 49, 8440-8448.	4.8	42
85	Doxorubicin-loaded redox-responsive amphiphilic dendritic porphyrin conjugates for chemotherapy and photodynamic therapy. RSC Advances, 2016, 6, 57552-57562.	3.6	13
86	Orthogonal Approach to Construct Cell-Like Vesicles via Pillar[5]arene-Based Amphiphilic Supramolecular Polymers. ACS Macro Letters, 2016, 5, 112-117.	4.8	24
87	Synthesis, characterization and chondrocyte culture of polyhedral oligomeric silsesquioxane (POSS)-containing hybrid hydrogels. RSC Advances, 2016, 6, 23471-23478.	3.6	18
88	Redox-responsive supramolecular amphiphiles constructed via host–guest interactions for photodynamic therapy. Biomaterials Science, 2015, 3, 1218-1227.	5.4	45
89	One-pot synthesis of well-defined amphiphilic alternating copolymer brushes based on POSS and their self-assembly in aqueous solution. RSC Advances, 2015, 5, 21580-21587.	3.6	21
90	Morphologyâ€Controlled Selfâ€Assembly of an Organic/Inorganic Hybrid Porphyrin Derivative Containing Polyhedral Oligomeric Silsesquioxane (POSS). Chemistry - A European Journal, 2015, 21, 5540-5547.	3.3	14

#	Article	IF	CITATIONS
91	Porphyrin-containing amphiphilic block copolymers for photodynamic therapy. Polymer Chemistry, 2015, 6, 2945-2954.	3.9	62
92	Photodynamic therapy of oligoethylene glycol dendronized reduction-sensitive porphyrins. Journal of Materials Chemistry B, 2015, 3, 3062-3071.	5.8	34
93	A PEGylated colorimetric and turn-on fluorescent sensor based on BODIPY for Hg(<scp>ii</scp>) detection in water. Polymer Chemistry, 2015, 6, 4279-4289.	3.9	50
94	Photocontrollable release and enhancement of photodynamic therapy based on host–guest supramolecular amphiphiles. Journal of Materials Chemistry B, 2015, 3, 7417-7426.	5.8	39
95	Self-assembly and disassembly of a redox-responsive ferrocene-containing amphiphilic block copolymer for controlled release. Polymer Chemistry, 2015, 6, 1817-1829.	3.9	112
96	A well-defined alternating copolymer based on a salicylaldimine Schiff base for highly sensitive zinc(<scp>ii</scp>) detection and pH sensing in aqueous solution. Polymer Chemistry, 2015, 6, 1127-1136.	3.9	28
97	Synthesis and self-assembly of stimuli-responsive amphiphilic block copolymers based on polyhedral oligomeric silsesquioxane. Journal of Polymer Science Part A, 2014, 52, 2669-2683.	2.3	33
98	A Giant Capsule from the Selfâ€Assembly of a Pentaâ€Telechelic Hybrid Poly(acrylic acid) Based on Polyhedral Oligomeric Silsesquioxane. Macromolecular Chemistry and Physics, 2014, 215, 900-905.	2.2	11
99	Morphology controlled supramolecular assemblies via complexation between (5,10,15,20-tetrakisphenyl-porphine) zinc and 4,4′-bipyridine: from nanospheres to microrings. RSC Advances, 2014, 4, 61378-61382.	3.6	10
100	A supramolecular approach for fabrication of photo-responsive block-controllable supramolecular polymers. Polymer Chemistry, 2014, 5, 5453.	3.9	23
101	One-pot synthesis of POSS-containing alternating copolymers by RAFT polymerization and their microphase-separated nanostructures. Polymer Chemistry, 2014, 5, 4534.	3.9	37
102	Synthesis of Organic/Inorganic Polyhedral Oligomeric Silsesquioxane-Containing Block Copolymers via Reversible Addition–Fragmentation Chain Transfer Polymerization and Their Self-Assembly in Aqueous Solution. Industrial & Engineering Chemistry Research, 2014, 53, 10673-10680.	3.7	25
103	Photocontrolled reversible supramolecular assemblies of a diblock azo-copolymer based on β-cyclodextrin–Azo host–guest inclusion complexation. Polymer Chemistry, 2013, 4, 2151.	3.9	41
104	Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Progress in Polymer Science, 2013, 38, 1121-1162.	24.7	352
105	Continuous fibrils from the self-assembly of monochelic polymeric porphyrin and PEGylated fullerene. RSC Advances, 2013, 3, 9206.	3.6	11
106	Synthesis of porphyrinic polystyrenes and their self-assembly with pristine fullerene (C60). Materials Letters, 2013, 91, 71-74.	2.6	14
107	Synthesis and characterization of new biodegradable combâ€dendritic triblock copolymers. Polymer International, 2012, 61, 1447-1455.	3.1	7
108	A "Click Chemistry―Approach to Linear and Star-Shaped Telechelic POSS-Containing Hybrid Polymers. Macromolecules, 2010, 43, 3148-3152.	4.8	119

#	Article	IF	CITATIONS
109	Synthesis via RAFT Polymerization of Tadpole-Shaped Organic/Inorganic Hybrid Poly(acrylic acid) Containing Polyhedral Oligomeric Silsesquioxane (POSS) and Their Self-assembly in Water. Macromolecules, 2009, 42, 2563-2569.	4.8	168
110	Synthesis and selfâ€assembly of tadpoleâ€shaped organic/inorganic hybrid poly(<i>N</i> â€isopropylacrylamide) containing polyhedral oligomeric silsesquioxane via RAFT polymerization. Journal of Polymer Science Part A, 2008, 46, 7049-7061.	2.3	77
111	Supramolecular Zinc Phthalocyanineâ^'Perylene Bisimide Triad:  Synthesis and Photophysical Properties. Journal of Physical Chemistry C, 2007, 111, 16096-16099.	3.1	39
112	Conformational Transition of Tethered Poly(N-isopropylacrylamide) Chains in Coronas of Micelles and Vesicles. Macromolecules, 2005, 38, 909-914.	4.8	100