Dirk Feldmeyer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3217360/dirk-feldmeyer-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 8,498 88 44 h-index g-index citations papers 88 8.9 5.89 9,775 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
80	Cell-Type Specific Neuromodulation of Excitatory and Inhibitory Neurons Muscarinic Acetylcholine Receptors in Layer 4 of Rat Barrel Cortex <i>Frontiers in Neural Circuits</i> , 2022 , 16, 843025	3.5	O
79	Cholinergic and Adenosinergic Modulation of Synaptic Release. <i>Neuroscience</i> , 2021 , 456, 114-130	3.9	3
78	Layer-Specific Inhibitory Microcircuits of Layer 6 Interneurons in Rat Prefrontal Cortex. <i>Cerebral Cortex</i> , 2021 , 31, 32-47	5.1	3
77	Muscarinic and Nicotinic Modulation of Neocortical Layer 6A Synaptic Microcircuits Is Cooperative and Cell-Specific. <i>Cerebral Cortex</i> , 2020 , 30, 3528-3542	5.1	4
76	Unveiling the Synaptic Function and Structure Using Paired Recordings From Synaptically Coupled Neurons. <i>Frontiers in Synaptic Neuroscience</i> , 2020 , 12, 5	3.5	5
75	A community-based transcriptomics classification and nomenclature of neocortical cell types. <i>Nature Neuroscience</i> , 2020 , 23, 1456-1468	25.5	76
74	Morphological and Functional Characterization of Non-fast-Spiking GABAergic Interneurons in Layer 4 Microcircuitry of Rat Barrel Cortex. <i>Cerebral Cortex</i> , 2018 , 28, 1439-1457	5.1	16
73	Inhibitory interneurons and their circuit motifs in the many layers of the barrel cortex. <i>Neuroscience</i> , 2018 , 368, 132-151	3.9	64
7 ²	Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex. <i>Frontiers in Neuroanatomy</i> , 2018 , 12, 1	3.6	62
71	Sociability Deficits and Altered Amygdala Circuits in Mice Lacking Pcdh10, an Autism Associated Gene. <i>Biological Psychiatry</i> , 2017 , 81, 193-202	7.9	38
70	Adenosine Differentially Modulates Synaptic Transmission of Excitatory and Inhibitory Microcircuits in Layer 4 of Rat Barrel Cortex. <i>Cerebral Cortex</i> , 2017 , 27, 4411-4422	5.1	22
69	Neocortical Layer 6B as a Remnant of the Subplate - A Morphological Comparison. <i>Cerebral Cortex</i> , 2017 , 27, 1011-1026	5.1	31
68	Dendritic Target Region-Specific Formation of Synapses Between Excitatory Layer 4 Neurons and Layer 6 Pyramidal Cells. <i>Cerebral Cortex</i> , 2016 , 26, 1569-1579	5.1	16
67	Sensory encoding in Neuregulin 1 mutants. <i>Brain Structure and Function</i> , 2016 , 221, 1067-81	4	12
66	Altered resonance properties of somatosensory responses in mice deficient for the schizophrenia risk gene Neuregulin 1. <i>Brain Structure and Function</i> , 2016 , 221, 4383-4398	4	4
65	Paired Recordings from Synaptically Coupled Neurones in Acute Neocortical Slices. <i>Neuromethods</i> , 2016 , 171-191	0.4	2
64	S1 Microcircuits 2016 , 547-563		

(2010-2016)

63	Comment on "Principles of connectivity among morphologically defined cell types in adult neocortex". <i>Science</i> , 2016 , 353, 1108	33.3	16
62	Structural determinants underlying the high efficacy of synaptic transmission and plasticity at synaptic boutons in layer 4 of the adult rat Tbarrel cortexT <i>Brain Structure and Function</i> , 2015 , 220, 3185	5- 2 09	21
61	Synaptic Microcircuits in the Barrel Cortex 2015 , 59-108		5
60	Morphological and physiological characterization of pyramidal neuron subtypes in rat medial prefrontal cortex. <i>Cerebral Cortex</i> , 2015 , 25, 788-805	5.1	91
59	Electrophysiological and morphological characterization of neuronal microcircuits in acute brain slices using paired patch-clamp recordings. <i>Journal of Visualized Experiments</i> , 2015 , 52358	1.6	18
58	Contribution of intracolumnar layer 2/3-to-layer 2/3 excitatory connections in shaping the response to whisker deflection in rat barrel cortex. <i>Cerebral Cortex</i> , 2015 , 25, 849-58	5.1	16
57	Cell type-specific effects of adenosine on cortical neurons. <i>Cerebral Cortex</i> , 2015 , 25, 772-87	5.1	44
56	A barrel-related interneuron in layer 4 of rat somatosensory cortex with a high intrabarrel connectivity. <i>Cerebral Cortex</i> , 2015 , 25, 713-25	5.1	45
55	Electrical Activity in Neurons 2013 , 113-143		
54	Barrel cortex function. <i>Progress in Neurobiology</i> , 2013 , 103, 3-27	10.9	230
54	Barrel cortex function. <i>Progress in Neurobiology</i> , 2013 , 103, 3-27 New insights into the classification and nomenclature of cortical GABAergic interneurons. <i>Nature Reviews Neuroscience</i> , 2013 , 14, 202-16	10.9	230 532
	New insights into the classification and nomenclature of cortical GABAergic interneurons. <i>Nature</i>		
53	New insights into the classification and nomenclature of cortical GABAergic interneurons. <i>Nature Reviews Neuroscience</i> , 2013 , 14, 202-16 Morphology and physiology of excitatory neurons in layer 6b of the somatosensory rat barrel	13.5	532
53 52	New insights into the classification and nomenclature of cortical GABAergic interneurons. <i>Nature Reviews Neuroscience</i> , 2013 , 14, 202-16 Morphology and physiology of excitatory neurons in layer 6b of the somatosensory rat barrel cortex. <i>Cerebral Cortex</i> , 2013 , 23, 2803-17	13.5 5.1	53 ² 48
53 52 51	New insights into the classification and nomenclature of cortical GABAergic interneurons. <i>Nature Reviews Neuroscience</i> , 2013 , 14, 202-16 Morphology and physiology of excitatory neurons in layer 6b of the somatosensory rat barrel cortex. <i>Cerebral Cortex</i> , 2013 , 23, 2803-17 Improved biocytin labeling and neuronal 3D reconstruction. <i>Nature Protocols</i> , 2012 , 7, 394-407	13.5 5.1 18.8	5324873
53 52 51 50	New insights into the classification and nomenclature of cortical GABAergic interneurons. <i>Nature Reviews Neuroscience</i> , 2013 , 14, 202-16 Morphology and physiology of excitatory neurons in layer 6b of the somatosensory rat barrel cortex. <i>Cerebral Cortex</i> , 2013 , 23, 2803-17 Improved biocytin labeling and neuronal 3D reconstruction. <i>Nature Protocols</i> , 2012 , 7, 394-407 Excitatory neuronal connectivity in the barrel cortex. <i>Frontiers in Neuroanatomy</i> , 2012 , 6, 24	13.5 5.1 18.8	5324873
53 52 51 50 49	New insights into the classification and nomenclature of cortical GABAergic interneurons. <i>Nature Reviews Neuroscience</i> , 2013 , 14, 202-16 Morphology and physiology of excitatory neurons in layer 6b of the somatosensory rat barrel cortex. <i>Cerebral Cortex</i> , 2013 , 23, 2803-17 Improved biocytin labeling and neuronal 3D reconstruction. <i>Nature Protocols</i> , 2012 , 7, 394-407 Excitatory neuronal connectivity in the barrel cortex. <i>Frontiers in Neuroanatomy</i> , 2012 , 6, 24 Neuronale Schaltkreise als kleinste Einheit kortikaler Netzwerke [Struktur und Funktion 2012 , 15-20 Morpho-Functional Mapping of Cortical Networks in Brain Slice Preparations Using Paired	13.5 5.1 18.8 3.6	532 48 73

45	Cholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 11753-8	11.5	81
44	The relation between dendritic geometry, electrical excitability, and axonal projections of L2/3 interneurons in rat barrel cortex. <i>Cerebral Cortex</i> , 2009 , 19, 938-50	5.1	55
43	Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. <i>Cerebral Cortex</i> , 2009 , 19, 926-37	5.1	85
42	L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. <i>Cerebral Cortex</i> , 2009 , 19, 951-62	5.1	54
41	Developmental alterations in the functional properties of excitatory neocortical synapses. <i>Journal of Physiology</i> , 2009 , 587, 1889-96	3.9	43
40	Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. <i>Nature Reviews Neuroscience</i> , 2008 , 9, 557-68	13.5	1092
39	Monosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex. <i>Cerebral Cortex</i> , 2008 , 18, 397-406	5.1	75
38	Efficient recruitment of layer 2/3 interneurons by layer 4 input in single columns of rat somatosensory cortex. <i>Journal of Neuroscience</i> , 2008 , 28, 8273-84	6.6	81
37	Postnatal development of synaptic transmission in local networks of L5A pyramidal neurons in rat somatosensory cortex. <i>Journal of Physiology</i> , 2007 , 585, 103-16	3.9	60
36	Reconstruction of an average cortical column in silico. <i>Brain Research Reviews</i> , 2007 , 55, 193-203		72
35	Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. <i>Brain Structure and Function</i> , 2007 , 212, 3-17	4	164
34	Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: interweaving in vitro and in vivo experimental observations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 16353-8	11.5	77
33	Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. <i>Journal of Physiology</i> , 2006 , 575, 583-602	3.9	202
32	Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex. <i>Journal of Neuroscience</i> , 2005 , 25, 3423-31	6.6	97
31	Morphologie und synaptische Interaktion von Neuronen einer kortikalen Kolumne. <i>E-Neuroforum</i> , 2004 , 10, 220-228		
30	Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. <i>Cerebral Cortex</i> , 2003 , 13, 1051-63	5.1	166
29	High-probability uniquantal transmission at excitatory synapses in barrel cortex. <i>Science</i> , 2003 , 302, 198	81 5-3 43	184
28	Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. <i>Journal of Physiology</i> , 2002 , 538, 803-22	3.9	353

27	Axonal projection, input and output synapses, and synaptic physiology of Cajal-Retzius cells in the developing rat neocortex. <i>Journal of Neuroscience</i> , 2002 , 22, 6908-19	6.6	88
26	Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column 2002 , 538, 803	3	1
25	Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. <i>Journal of Neuroscience</i> , 2000 , 20, 5300-11	6.6	237
24	Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. <i>Nature</i> , 2000 , 406, 78-81	50.4	737
23	Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex. <i>Journal of Physiology</i> , 2000 , 525 Pt 1, 31-9	3.9	64
22	Neuronal basic helix-loop-helix proteins (NEX and BETA2/Neuro D) regulate terminal granule cell differentiation in the hippocampus. <i>Journal of Neuroscience</i> , 2000 , 20, 3714-24	6.6	206
21	Connexin expression in electrically coupled postnatal rat brain neurons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 10260-5	11.5	218
20	Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. <i>Nature Neuroscience</i> , 1999 , 2, 1098-105	25.5	315
19	Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single T barrelT of developing rat somatosensory cortex. <i>Journal of Physiology</i> , 1999 , 521 Pt 1, 169-90	3.9	316
18	Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. <i>Nature Neuroscience</i> , 1999 , 2, 57-64	25.5	190
17	NMDA receptor diversity in the cerebellum: identification of subunits contributing to functional receptors. <i>Neuropharmacology</i> , 1998 , 37, 1369-80	5.5	72
16	Functional correlation of NMDA receptor epsilon subunits expression with the properties of single-channel and synaptic currents in the developing cerebellum. <i>Journal of Neuroscience</i> , 1996 , 16, 4376-82	6.6	156
15	Identification of a native low-conductance NMDA channel with reduced sensitivity to Mg2+ in rat central neurones. <i>Journal of Physiology</i> , 1996 , 494 (Pt 2), 479-92	3.9	130
14	Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors. <i>Journal of Physiology</i> , 1996 , 492 (Pt 1), 129-42	3.9	144
13	Functional consequences of changes in NMDA receptor subunit expression during development. Journal of Neurocytology, 1996 , 25, 857-67		64
12	Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. <i>Science</i> , 1995 , 270, 1677-80	33.3	476
11	Calcium current reactivation after flash photolysis of nifedipine in skeletal muscle fibres of the frog. <i>Journal of Physiology</i> , 1995 , 487, 51-6	3.9	11
10	NMDA-receptor channel diversity in the developing cerebellum. <i>Nature</i> , 1994 , 368, 335-9	50.4	277

9	Neurotransmitters. Elusive glutamate receptors. Current Biology, 1994, 4, 82-4	6.3	19	
8	A possible role of sarcoplasmic Ca2+ release in modulating the slow Ca2+ current of skeletal muscle. <i>Pflugers Archiv European Journal of Physiology</i> , 1993 , 425, 54-61	4.6	20	
7	Modulation of calcium current gating in frog skeletal muscle by conditioning depolarization. Journal of Physiology, 1992 , 457, 639-53	3.9	21	
6	Fast gating kinetics of the slow Ca2+ current in cut skeletal muscle fibres of the frog. <i>Journal of Physiology</i> , 1990 , 425, 347-67	3.9	46	
5	Effects of gallopamil on calcium release and intramembrane charge movements in frog skeletal muscle fibres. <i>Journal of Physiology</i> , 1990 , 421, 343-62	3.9	24	
4	Effects of lanthanum on contractile inactivation and D600-induced paralysis in twitch muscle fibres of the frog. <i>Pflugers Archiv European Journal of Physiology</i> , 1989 , 414, 373-5	4.6		
3	Effects of guanidinium on EC coupling and tension generation in frog skeletal muscle. <i>Journal of Muscle Research and Cell Motility</i> , 1988 , 9, 541-51	3.5	6	
2	Layer-specific inhibitory microcircuits of layer 6 interneurons in rat prefrontal cortex		1	
1	Cell Type-Specific Modulation of Laver 6A Excitatory Microcircuits by Acetylcholine in Rat Barrel Cortex		3	