Christian Becker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3217270/publications.pdf

Version: 2024-02-01

		201385	161609
55	3,620	27	54
papers	citations	h-index	g-index
56	56	56	5715
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Inflammatory Monocyte Counts Determine Venous Blood Clot Formation and Resolution. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 145-155.	1.1	17
2	Specialized regulatory T cells control venous blood clot resolution through SPARC. Blood, 2021, 137, 1517-1526.	0.6	27
3	Therapeutic melanoma inhibition by local micelle-mediated cyclic nucleotide repression. Nature Communications, 2021, 12, 5981.	5. 8	13
4	Targeted Activation of T Cells with IL-2-Coupled Nanoparticles. Cells, 2020, 9, 2063.	1.8	12
5	Thrombo-Inflammation in Cardiovascular Disease: An Expert Consensus Document from the Third Maastricht Consensus Conference on Thrombosis. Thrombosis and Haemostasis, 2020, 120, 538-564.	1.8	64
6	Intervention of Inflammatory Monocyte Activity Limits Dermal Fibrosis. Journal of Investigative Dermatology, 2019, 139, 2144-2153.	0.3	11
7	Safety of low-dose subcutaneous recombinant interleukin-2: systematic review and meta-analysis of randomized controlled trials. Scientific Reports, 2019, 9, 7145.	1.6	17
8	Unexpected role of natural killer cellâ€derived interferonâ€Î³ as a driver ofNETosis andDVT. Journal of Thrombosis and Haemostasis, 2019, 17, 400-402.	1.9	3
9	Acute deep vein thrombosis suppresses peripheral T cell effector function. British Journal of Haematology, 2019, 184, 847-850.	1.2	5
10	CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice. Cardiovascular Research, 2018, 114, 312-323.	1.8	37
11	Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nature Immunology, 2018, 19, 1319-1329.	7.0	274
12	The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases. Frontiers in Immunology, 2016, 7, 123.	2.2	213
13	<scp>GARP</scp> inhibits allergic airway inflammation in a humanized mouse model. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1274-1283.	2.7	17
14	Innate Effector-Memory T-Cell Activation Regulates Post-Thrombotic Vein Wall Inflammation and Thrombus Resolution. Circulation Research, 2016, 119, 1286-1295.	2.0	61
15	Treg cells as potential cellular targets for functionalized nanoparticles in cancer therapy. Nanomedicine, 2016, 11, 2699-2709.	1.7	19
16	Translating Treg Therapy in Humanized Mice. Frontiers in Immunology, 2015, 6, 623.	2.2	17
17	Deep vein thrombus formation induced by flow reduction in mice is determined by venous side branches. Clinical Hemorheology and Microcirculation, 2014, 56, 145-152.	0.9	26
18	Inflammatory Monocytes Determine Endothelial Nitric-oxide Synthase Uncoupling and Nitro-oxidative Stress Induced by Angiotensin II. Journal of Biological Chemistry, 2014, 289, 27540-27550.	1.6	96

#	Article	IF	CITATIONS
19	Polypeptoid- <i>block</i> -polypeptide Copolymers: Synthesis, Characterization, and Application of Amphiphilic Block Copolypept(o)ides in Drug Formulations and Miniemulsion Techniques. Biomacromolecules, 2014, 15, 548-557.	2.6	122
20	Interaction of <l>N</l> -(2-Hydroxypropyl)Methacrylamide Based Homo, Random and Block Copolymers with Primary Immune Cells. Journal of Biomedical Nanotechnology, 2014, 10, 81-91.	0.5	6
21	CD40L contributes to angiotensin II-induced pro-thrombotic state, vascular inflammation, oxidative stress and endothelial dysfunction. Basic Research in Cardiology, 2013, 108, 386.	2.5	55
22	Interferon-α Suppresses cAMP to Disarm Human Regulatory T Cells. Cancer Research, 2013, 73, 5647-5656.	0.4	87
23	Angiotensin Il–Induced Vascular Dysfunction Depends on Interferon-γ–Driven Immune Cell Recruitment and Mutual Activation of Monocytes and NK-Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1313-1319.	1.1	131
24	Interferon \hat{l}_{\pm} interferes with immunological tolerance. Oncolmmunology, 2013, 2, e27528.	2.1	5
25	Soluble GARP has potent antiinflammatory and immunomodulatory impact on human CD4+ T cells. Blood, 2013, 122, 1182-1191.	0.6	58
26	Kinetics of IL-6 Production Defines T Effector Cell Responsiveness to Regulatory T Cells in Multiple Sclerosis. PLoS ONE, 2013, 8, e77634.	1.1	40
27	Repression of Cyclic Adenosine Monophosphate Upregulation Disarms and Expands Human Regulatory T Cells. Journal of Immunology, 2012, 188, 1091-1097.	0.4	40
28	Boosting regulatory T cell function by CD4 stimulation enters the clinic. Frontiers in Immunology, 2012, 3, 164.	2.2	15
29	CD4-mediated regulatory T-cell activation inhibits the development of disease in a humanized mouse model of allergic airway disease. Journal of Allergy and Clinical Immunology, 2012, 129, 521-528.e7.	1.5	28
30	Cyclic <scp>AMP</scp> underpins suppression by regulatory <scp>T</scp> cells. European Journal of Immunology, 2012, 42, 1375-1384.	1.6	70
31	Lysozyme M–Positive Monocytes Mediate Angiotensin Il–Induced Arterial Hypertension and Vascular Dysfunction. Circulation, 2011, 124, 1370-1381.	1.6	422
32	Increased regulatory Tâ€cell frequencies in patients with advanced melanoma correlate with a generally impaired Tâ€cell responsiveness and are restored after dendritic cellâ€based vaccination. Experimental Dermatology, 2010, 19, e213-21.	1.4	41
33	Generation of monoclonal antibodies against human regulatory T cells. Journal of Immunological Methods, 2010, 353, 62-70.	0.6	5
34	Large scale preparation of human MHC class II+ integrin \hat{I}^21 + Tregs. Journal of Immunological Methods, 2010, 360, 96-102.	0.6	1
35	Protection from graft-versus-host disease by HIV-1 envelope protein gp120-mediated activation of human CD4+CD25+ regulatory T cells. Blood, 2009, 114, 1263-1269.	0.6	67
36	miR-155 Inhibition Sensitizes CD4+ Th Cells for TREG Mediated Suppression. PLoS ONE, 2009, 4, e7158.	1.1	79

3

#	Article	IF	Citations
37	Cyclic adenosine monophosphate is a key component of regulatory T cell–mediated suppression. Journal of Experimental Medicine, 2007, 204, 1303-1310.	4.2	524
38	Human CD4+CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood, 2007, 110, 1550-1558.	0.6	181
39	CD4-mediated functional activation of human CD4+CD25+ regulatory T cells. European Journal of Immunology, 2007, 37, 1217-1223.	1.6	29
40	Regulatory T cells: present facts and future hopes. Medical Microbiology and Immunology, 2006, 195, 113-124.	2.6	23
41	CD8+ T cells armed with retrovirally transduced IFN-Î ³ . Journal of Molecular Medicine, 2006, 85, 63-73.	1.7	2
42	Induction of strong and persistent MelanA/MART-1-specific immune responses by adjuvant dendritic cell-based vaccination of stage II melanoma patients. International Journal of Cancer, 2006, 118, 2617-2627.	2.3	57
43	Isolation and Expansion of Tumor-Specific CD4 ⁺ T-Cells by Means of Cytokine Secretion., 2005, 109, 257-264.		0
44	Dendritic Cells: Sentinels of Immunity and Tolerance. International Journal of Hematology, 2005, 81, 197-203.	0.7	49
45	Targeting of Antigens to Activated Dendritic Cells In vivo Cures Metastatic Melanoma in Mice. Cancer Research, 2005, 65, 7007-7012.	0.4	139
46	Human CD25+ regulatory T cells: two subsets defined by the integrins $\hat{1}\pm4\hat{1}^2$ 7 or $\hat{1}\pm4\hat{1}^2$ 1 confer distinct suppressive properties upon CD4+ T helper cells. European Journal of Immunology, 2004, 34, 1303-1311.	1.6	165
47	Adoptive tumor therapy with T lymphocytes enriched through an IFN- \hat{l}^3 capture assay. Nature Medicine, 2001, 7, 1159-1162.	15.2	154
48	MLV-10A1 retrovirus pseudotype efficiently transduces primary human CD4+ T lymphocytes. Journal of Gene Medicine, 2000, 2, 409-415.	1.4	16
49	Efficient Gene Transfer into Primary Human CD8+T Lymphocytes by MuLV-10A1 Retrovirus Pseudotype. Human Gene Therapy, 2000, 11, 1005-1014.	1.4	40
50	Differential Activation of CD8+Tumor-Specific Tc1 and Tc2 Cells by an IL-10-Producing Murine Plasmacytoma. Autoimmunity, 1998, 6, 331-342.	0.6	2
51	CD8+ tumor-specific Tc cells primed in vivo or in vitro against the BALB/c plasmacytoma ADJ-PC-5 use the same TcR V#x03B2; families but display distinct TC1 or TC2 characteristics. Immunobiology, 1997, 197, 16-30.	0.8	3
52	Lack of correlation between rejection of tumor cells co-expressing interleukin-2 and B7.1 and vaccine efficiency. European Journal of Immunology, 1997, 27, 1657-1662.	1.6	16
53	Suppression of Tumourâ€Specific Cytotoxic Tâ€Cell Responses Against the Syngeneic BALB/c Plasmacytoma ADJâ€PCâ€5 by Tumourâ€Induced CD8 + Regulatory T Cells Via IFNâ€Î³. Scandinavian Journal of Immunology, 19943, 421-430.	961,.3	9
54	T Helper Target Cell DNA Fragmentation through a CD4-Positive T Suppressor Cell Clone Inducing Specific Unresponsiveness. Cellular Immunology, 1994, 153, 505-515.	1.4	2

#	Article	IF	CITATIONS
55	Lymphokine profile and activation pattern of two unrelated antigen- or idiotype-specific T suppressor cell clones. European Journal of Immunology, 1992, 22, 1961-1966.	1.6	8