
Kazuo Yamagata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3217087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromosome counting in the mouse zygote using lowâ€invasive superâ€resolution liveâ€cell imaging. Genes To Cells, 2022, 27, 214-228.	1.2	8
2	DNA replication fork speed underlies cell fate changes and promotes reprogramming. Nature Genetics, 2022, 54, 318-327.	21.4	38
3	Micronucleus formation during early cleavage division is a potential hallmark of preimplantation embryonic loss in cattle. Biochemical and Biophysical Research Communications, 2022, 617, 25-32.	2.1	4
4	Asynchronous division at 4–8-cell stage of preimplantation embryos affects live birth through ICM/TE differentiation. Scientific Reports, 2022, 12, .	3.3	6
5	RanGTP and the actin cytoskeleton keep paternal and maternal chromosomes apart during fertilization. Journal of Cell Biology, 2021, 220, .	5.2	15
6	3D convolutional neural networks-based segmentation to acquire quantitative criteria of the nucleus during mouse embryogenesis. Npj Systems Biology and Applications, 2020, 6, 32.	3.0	30
7	Zygotic Nuclear F-Actin Safeguards Embryonic Development. Cell Reports, 2020, 31, 107824.	6.4	34
8	Chromosome segregation error during early cleavage in mouse pre-implantation embryo does not necessarily cause developmental failure after blastocyst stage. Scientific Reports, 2020, 10, 854.	3.3	24
9	Editing DNA Methylation in Mammalian Embryos. International Journal of Molecular Sciences, 2020, 21, 637.	4.1	13
10	Normal B cell development and Pax5 expression in Thy28/ThyN1-deficient mice. PLoS ONE, 2019, 14, e0220199.	2.5	2
11	Nuclear formation induced by DNA-conjugated beads in living fertilised mouse egg. Scientific Reports, 2019, 9, 8461.	3.3	2
12	Signs of biological activities of 28,000-year-old mammoth nuclei in mouse oocytes visualized by live-cell imaging. Scientific Reports, 2019, 9, 4050.	3.3	25
13	Histone H3K9 Methyltransferase G9a in Oocytes Is Essential for Preimplantation Development but Dispensable for CG Methylation Protection. Cell Reports, 2019, 27, 282-293.e4.	6.4	62
14	Peroxiredoxin as a functional endogenous antioxidant enzyme in pronuclei of mouse zygotes. Journal of Reproduction and Development, 2018, 64, 161-171.	1.4	4
15	A microfluidic device for isolating intact chromosomes from single mammalian cells and probing their folding stability by controlling solution conditions. Scientific Reports, 2018, 8, 13684.	3.3	8
16	Live-cell imaging of nuclear–chromosomal dynamics in bovine in vitro fertilised embryos. Scientific Reports, 2018, 8, 7460.	3.3	23
17	Ubiquitin-proteasome system modulates zygotic genome activation in early mouse embryos and influences full-term development. Journal of Reproduction and Development, 2018, 64, 65-74.	1.4	14
18	Testis-Specific Histone Variant H3t Gene Is Essential for Entry into Spermatogenesis. Cell Reports, 2017, 18, 593-600.	6.4	82

ΚΑΖΟΟ ΥΑΜΑGΑΤΑ

#	Article	IF	CITATIONS
19	Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules. Biology Open, 2017, 6, 415-424.	1.2	39
20	Viable offspring after imaging of Ca2+ oscillations and visualization of the cortical reaction in mouse eggsâ€. Biology of Reproduction, 2017, 96, 563-575.	2.7	10
21	Chd2 regulates chromatin for proper gene expression toward differentiation in mouse embryonic stem cells. Nucleic Acids Research, 2017, 45, 8758-8772.	14.5	31
22	Targeted DNA methylation in pericentromeres with genome editing-based artificial DNA methyltransferase. PLoS ONE, 2017, 12, e0177764.	2.5	28
23	Live imaging of X chromosome reactivation dynamics in early mouse development can discriminate naìve from primed pluripotent stem cells. Development (Cambridge), 2016, 143, 2958-64.	2.5	18
24	A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation. Journal of Molecular Biology, 2016, 428, 3885-3902.	4.2	52
25	Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 626-631.	7.1	88
26	Heterochromatin Dynamics during the Differentiation Process Revealed by the DNA Methylation Reporter Mouse, MethylRO. Stem Cell Reports, 2014, 2, 910-924.	4.8	40
27	Longâ€ŧerm liveâ€cell imaging of mammalian preimplantation development and derivation process of pluripotent stem cells from the embryos. Development Growth and Differentiation, 2013, 55, 378-389.	1.5	14
28	Abnormal chromosome segregation at early cleavage is a major cause of the full-term developmental failure of mouse clones. Developmental Biology, 2012, 364, 56-65.	2.0	56
29	Long-Term, Six-Dimensional Live-Cell Imaging for the Mouse Preimplantation Embryo That Does Not Affect Full-Term Development. Journal of Reproduction and Development, 2009, 55, 343-350.	1.4	78
30	Visualizing histone modifications in living cells: spatiotemporal dynamics of H3 phosphorylation during interphase. Journal of Cell Biology, 2009, 187, 781-790.	5.2	117
31	Assessment of chromosomal integrity using a novel live-cell imaging technique in mouse embryos produced by intracytoplasmic sperm injection. Human Reproduction, 2009, 24, 2490-2499.	0.9	51
32	Noninvasive visualization of molecular events in the mammalian zygote. Genesis, 2005, 43, 71-79.	1.6	88
33	Sperm from the Calmegin-Deficient Mouse Have Normal Abilities for Binding and Fusion to the Egg Plasma Membrane. Developmental Biology, 2002, 250, 348-357.	2.0	69
34	Difference of acrosomal serine protease system between mouse and other rodent sperm. , 1999, 25, 115-122.		23
35	Difference of acrosomal serine protease system between mouse and other rodent sperm. Genesis, 1999, 25, 115-122.	2.1	1
36	p-Aminobenzamidine-sensitive acrosomal protease(s) other than acrosin serve the sperm penetration of the egg zona pellucida in mouse. Zygote, 1998, 6, 311-319.	1.1	42

#	Article	IF	CITATIONS
37	Search for morphological indicators that predict implantation by principal component analysis using images of blastocyst. PeerJ, 0, 10, e13441.	2.0	0