Kazuo Yamagata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3217087/publications.pdf

Version: 2024-02-01

394421 395702 1,240 37 19 33 citations g-index h-index papers 40 40 40 1343 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Visualizing histone modifications in living cells: spatiotemporal dynamics of H3 phosphorylation during interphase. Journal of Cell Biology, 2009, 187, 781-790.	5.2	117
2	Noninvasive visualization of molecular events in the mammalian zygote. Genesis, 2005, 43, 71-79.	1.6	88
3	Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 626-631.	7.1	88
4	Testis-Specific Histone Variant H3t Gene Is Essential for Entry into Spermatogenesis. Cell Reports, 2017, 18, 593-600.	6.4	82
5	Long-Term, Six-Dimensional Live-Cell Imaging for the Mouse Preimplantation Embryo That Does Not Affect Full-Term Development. Journal of Reproduction and Development, 2009, 55, 343-350.	1.4	78
6	Sperm from the Calmegin-Deficient Mouse Have Normal Abilities for Binding and Fusion to the Egg Plasma Membrane. Developmental Biology, 2002, 250, 348-357.	2.0	69
7	Histone H3K9 Methyltransferase G9a in Oocytes Is Essential for Preimplantation Development but Dispensable for CG Methylation Protection. Cell Reports, 2019, 27, 282-293.e4.	6.4	62
8	Abnormal chromosome segregation at early cleavage is a major cause of the full-term developmental failure of mouse clones. Developmental Biology, 2012, 364, 56-65.	2.0	56
9	A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation. Journal of Molecular Biology, 2016, 428, 3885-3902.	4.2	52
10	Assessment of chromosomal integrity using a novel live-cell imaging technique in mouse embryos produced by intracytoplasmic sperm injection. Human Reproduction, 2009, 24, 2490-2499.	0.9	51
11	p-Aminobenzamidine-sensitive acrosomal protease(s) other than acrosin serve the sperm penetration of the egg zona pellucida in mouse. Zygote, 1998, 6, 311-319.	1.1	42
12	Heterochromatin Dynamics during the Differentiation Process Revealed by the DNA Methylation Reporter Mouse, MethylRO. Stem Cell Reports, 2014, 2, 910-924.	4.8	40
13	Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules. Biology Open, 2017, 6, 415-424.	1.2	39
14	DNA replication fork speed underlies cell fate changes and promotes reprogramming. Nature Genetics, 2022, 54, 318-327.	21.4	38
15	Zygotic Nuclear F-Actin Safeguards Embryonic Development. Cell Reports, 2020, 31, 107824.	6.4	34
16	Chd2 regulates chromatin for proper gene expression toward differentiation in mouse embryonic stem cells. Nucleic Acids Research, 2017, 45, 8758-8772.	14.5	31
17	3D convolutional neural networks-based segmentation to acquire quantitative criteria of the nucleus during mouse embryogenesis. Npj Systems Biology and Applications, 2020, 6, 32.	3.0	30
18	Targeted DNA methylation in pericentromeres with genome editing-based artificial DNA methyltransferase. PLoS ONE, 2017, 12, e0177764.	2.5	28

#	Article	IF	CITATIONS
19	Signs of biological activities of 28,000-year-old mammoth nuclei in mouse oocytes visualized by live-cell imaging. Scientific Reports, 2019, 9, 4050.	3.3	25
20	Chromosome segregation error during early cleavage in mouse pre-implantation embryo does not necessarily cause developmental failure after blastocyst stage. Scientific Reports, 2020, 10, 854.	3.3	24
21	Difference of acrosomal serine protease system between mouse and other rodent sperm., 1999, 25, 115-122.		23
22	Live-cell imaging of nuclear–chromosomal dynamics in bovine in vitro fertilised embryos. Scientific Reports, 2018, 8, 7460.	3.3	23
23	Live imaging of X chromosome reactivation dynamics in early mouse development can discriminate naÃ-ve from primed pluripotent stem cells. Development (Cambridge), 2016, 143, 2958-64.	2.5	18
24	RanGTP and the actin cytoskeleton keep paternal and maternal chromosomes apart during fertilization. Journal of Cell Biology, 2021, 220, .	5.2	15
25	Longâ€term liveâ€cell imaging of mammalian preimplantation development and derivation process of pluripotent stem cells from the embryos. Development Growth and Differentiation, 2013, 55, 378-389.	1.5	14
26	Ubiquitin-proteasome system modulates zygotic genome activation in early mouse embryos and influences full-term development. Journal of Reproduction and Development, 2018, 64, 65-74.	1.4	14
27	Editing DNA Methylation in Mammalian Embryos. International Journal of Molecular Sciences, 2020, 21, 637.	4.1	13
28	Viable offspring after imaging of Ca2+ oscillations and visualization of the cortical reaction in mouse eggsâ€. Biology of Reproduction, 2017, 96, 563-575.	2.7	10
29	A microfluidic device for isolating intact chromosomes from single mammalian cells and probing their folding stability by controlling solution conditions. Scientific Reports, 2018, 8, 13684.	3.3	8
30	Chromosome counting in the mouse zygote using lowâ€invasive superâ€resolution liveâ€cell imaging. Genes To Cells, 2022, 27, 214-228.	1.2	8
31	Asynchronous division at 4–8-cell stage of preimplantation embryos affects live birth through ICM/TE differentiation. Scientific Reports, 2022, 12, .	3.3	6
32	Peroxiredoxin as a functional endogenous antioxidant enzyme in pronuclei of mouse zygotes. Journal of Reproduction and Development, 2018, 64, 161-171.	1.4	4
33	Micronucleus formation during early cleavage division is a potential hallmark of preimplantation embryonic loss in cattle. Biochemical and Biophysical Research Communications, 2022, 617, 25-32.	2.1	4
34	Normal B cell development and Pax5 expression in Thy28/ThyN1-deficient mice. PLoS ONE, 2019, 14, e0220199.	2.5	2
35	Nuclear formation induced by DNA-conjugated beads in living fertilised mouse egg. Scientific Reports, 2019, 9, 8461.	3.3	2
36	Difference of acrosomal serine protease system between mouse and other rodent sperm. Genesis, 1999, 25, 115-122.	2.1	1

3

#	Article	IF	CITATIONS
37	Search for morphological indicators that predict implantation by principal component analysis using images of blastocyst. PeerJ, 0, 10, e13441.	2.0	O