Pravin S Shinde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3216764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient electrochromic nickel oxide thin films by electrodeposition. Journal of Alloys and Compounds, 2010, 489, 667-673.	5.5	173
2	Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation. Journal of Photochemistry and Photobiology B: Biology, 2011, 104, 425-433.	3.8	120
3	Synthesis and characterization of Cu2ZnSnS4 thin films by SILAR method. Journal of Physics and Chemistry of Solids, 2012, 73, 735-740.	4.0	118
4	Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films. Applied Surface Science, 2012, 258, 9969-9976.	6.1	110
5	Structural, optical and electrical characterization of spray-deposited TiO2 thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 130, 220-227.	3.5	106
6	Fabrication of superior α-Fe2O3 nanorod photoanodes through ex-situ Sn-doping for solar water splitting. Solar Energy Materials and Solar Cells, 2016, 144, 247-255.	6.2	101
7	Onset potential behavior in α-Fe ₂ O ₃ photoanodes: the influence of surface and diffusion Sn doping on the surface states. Physical Chemistry Chemical Physics, 2016, 18, 2495-2509.	2.8	96
8	Physical properties of transparent and conducting sprayed fluorine doped zinc oxide thin films. Solid State Sciences, 2008, 10, 1209-1214.	3.2	92
9	Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films. Journal Physics D: Applied Physics, 2008, 41, 105109.	2.8	91
10	Bifunctional TiO ₂ underlayer for α-Fe ₂ O ₃ nanorod based photoelectrochemical cells: enhanced interface and Ti ⁴⁺ doping. Journal of Materials Chemistry A, 2015, 3, 5007-5013.	10.3	90
11	Ag grid induced photocurrent enhancement in WO3 photoanodes and their scale-up performance toward photoelectrochemical H2 generation. International Journal of Hydrogen Energy, 2011, 36, 5262-5270.	7.1	89
12	Fabrication of a ternary CdS/ZnIn ₂ S ₄ /TiO ₂ heterojunction for enhancing photoelectrochemical performance: effect of cascading electron–hole transfer. Journal of Materials Chemistry A, 2015, 3, 23597-23606.	10.3	85
13	Nanocoral architecture of TiO2 by hydrothermal process: Synthesis and characterization. Applied Surface Science, 2011, 257, 9737-9746.	6.1	79
14	Structural, optical and electrochromic properties of nickel oxide thin films grown from electrodeposited nickel sulphide. Applied Surface Science, 2007, 253, 9365-9371.	6.1	76
15	Photoluminescence of zinc oxide nanopowder synthesized by a combustion method. Powder Technology, 2011, 208, 185-188.	4.2	66
16	Structural, electrical and optical properties of TiO2 doped WO3 thin films. Applied Surface Science, 2005, 252, 1643-1650.	6.1	62
17	Facile growth of hierarchical hematite (α-Fe2O3) nanopetals on FTO by pulse reverse electrodeposition for photoelectrochemical water splitting. Journal of Materials Chemistry, 2012, 22, 10469.	6.7	60
18	Properties of spray deposited titanium dioxide thin films and their application in photoelectrocatalysis. Solar Energy Materials and Solar Cells, 2008, 92, 283-290.	6.2	53

#	Article	IF	CITATIONS
19	Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2 heterostructure photoanode for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2016, 184, 337-346.	20.2	52
20	Properties of chemical vapour deposited nanocrystalline TiO2 thin films and their use in dye-sensitized solar cells. Journal of Analytical and Applied Pyrolysis, 2008, 82, 83-88.	5.5	50
21	Exploiting the dynamic Sn diffusion from deformation of FTO to boost the photocurrent performance of hematite photoanodes. Solar Energy Materials and Solar Cells, 2015, 141, 71-79.	6.2	48
22	UVA and solar light assisted photoelectrocatalytic degradation of AO7 dye in water using spray deposited TiO2 thin films. Applied Catalysis B: Environmental, 2009, 89, 288-294.	20.2	47
23	Electrochromic performance of the mixed V2O5–WO3 thin films synthesized by pulsed spray pyrolysis technique. Current Applied Physics, 2014, 14, 389-395.	2.4	46
24	Electrodeposited zinc oxide thin films: Nucleation and growth mechanism. Solar Energy Materials and Solar Cells, 2007, 91, 864-870.	6.2	45
25	Structural, morphological, optical and electrochromic properties of Ti-doped MoO3 thin films. Solar Energy Materials and Solar Cells, 2009, 93, 183-187.	6.2	44
26	Highly efficient and stable 3D Ni(OH)2/CdS/ZnIn2S4/TiO2 heterojunction under solar light: Effect of an improved TiO2/FTO interface and cocatalyst. Solar Energy Materials and Solar Cells, 2017, 159, 475-487.	6.2	39
27	Synthesis of electrochromic vanadium oxide by pulsed spray pyrolysis technique and its properties. Journal Physics D: Applied Physics, 2009, 42, 025404.	2.8	36
28	Fabrication of efficient CdS nanoflowers-decorated TiO2 nanotubes array heterojunction photoanode by a novel synthetic approach for solar hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 21078-21087.	7.1	36
29	Investigating the Redox Properties of Two-Dimensional MoS ₂ Using Photoluminescence Spectroelectrochemistry and Scanning Electrochemical Cell Microscopy. Journal of Physical Chemistry Letters, 2020, 11, 3488-3494.	4.6	35
30	Photoelectrocatalytic degradation of oxalic acid by spray deposited nanocrystalline zinc oxide thin films. Journal of Alloys and Compounds, 2012, 538, 237-243.	5.5	34
31	Effective utilization of spray pyrolyzed CeO2 as optically passive counter electrode for enhancing optical modulation of WO3. Solid State Ionics, 2009, 180, 1324-1331.	2.7	33
32	Synthesis of MoS ₂ from [Mo ₃ S ₇ (S ₂ CNEt ₂) ₃]I for enhancing photoelectrochemical performance and stability of Cu ₂ O photocathode toward efficient solar water splitting, Journal of Materials Chemistry A, 2018, 6, 9569-9582	10.3	33
33	Dye sensitized solar cells based on zinc oxide bottle brush. Materials Letters, 2011, 65, 2235-2237.	2.6	32
34	Scalable Core–Shell MoS ₂ /Sb ₂ Se ₃ Nanorod Array Photocathodes for Enhanced Photoelectrochemical Water Splitting. Solar Rrl, 2020, 4, 1900442.	5.8	32
35	Enhanced optical modulation due to SPR in gold nanoparticles embedded WO3 thin films. Journal of Alloys and Compounds, 2011, 509, 1729-1733.	5.5	31
36	Fine-Tuning Pulse Reverse Electrodeposition for Enhanced Photoelectrochemical Water Oxidation Performance of α-Fe ₂ O ₃ Photoanodes. Journal of Physical Chemistry C, 2015, 119, 5281-5292.	3.1	30

#	Article	IF	CITATIONS
37	Synthesis of electrochromic tin oxide thin films with faster response by spray pyrolysis. Applied Surface Science, 2007, 253, 8560-8567.	6.1	28
38	PVP-assisted synthesis of nanostructured transparent WO3 thin films for photoelectrochemical water splitting. Materials and Design, 2016, 90, 1005-1009.	7.0	28
39	Photoelectrochemical properties of spray deposited n-ZnIn2Se4 thin films. Solar Energy Materials and Solar Cells, 2008, 92, 453-456.	6.2	27
40	Electron–phonon interaction and size effect study in catalyst based zinc oxide thin films. Journal of Molecular Structure, 2010, 984, 186-193.	3.6	27
41	Synthesis and characterization of highly stable optically passive CeO2–ZrO2 counter electrode. Electrochimica Acta, 2010, 55, 1900-1906.	5.2	27
42	Efficient dye-sensitized solar cells based on hierarchical rutile TiO2 microspheres. CrystEngComm, 2012, 14, 8156.	2.6	27
43	From beads-to-wires-to-fibers of tungsten oxide: electrochromic response. Applied Physics A: Materials Science and Processing, 2009, 97, 323-330.	2.3	26
44	Investigation of structural, optical and luminescent properties of sprayed N-doped zinc oxide thin films. Journal of Analytical and Applied Pyrolysis, 2012, 97, 181-188.	5.5	25
45	Rapid Screening of Photoanode Materials Using Scanning Photoelectrochemical Microscopy Technique and Formation of Z-Scheme Solar Water Splitting System by Coupling p- and n-type Heterojunction Photoelectrodes. ACS Applied Energy Materials, 2018, 1, 2283-2294.	5.1	24
46	Room temperature electrocrystallization of CdSe thin films from ethylene glycol bath. Journal of Alloys and Compounds, 2008, 459, 515-520.	5.5	23
47	Structural, optical and electrochromic properties of Nb-doped MoO3 thin films. Applied Surface Science, 2008, 254, 5895-5898.	6.1	22
48	Structural, Optical, and Photoelectrochemical Properties of Sprayed TiO ₂ Thin Films: Effect of Precursor Concentration. Journal of the American Ceramic Society, 2008, 91, 1266-1272.	3.8	22
49	Surfactant and TiO 2 underlayer derived porous hematite nanoball array photoanode for enhanced photoelectrochemical water oxidation. Chemical Engineering Journal, 2017, 320, 81-92.	12.7	21
50	Photoelectrochemical study of carbon-modified p-type Cu ₂ O nanoneedles and n-type TiO _{2â^²x} nanorods for Z-scheme solar water splitting in a tandem cell configuration. RSC Advances, 2019, 9, 13576-13585.	3.6	21
51	Synthesis and characterization of spray pyrolyzed nanocrystalline CeO2–SiO2 thin films as passive counter electrodes. Solar Energy Materials and Solar Cells, 2010, 94, 781-787.	6.2	20
52	Spray deposited titanium oxide thin films as passive counter electrodes. Electrochimica Acta, 2007, 52, 3114-3120.	5.2	17
53	Preparation and properties of spray-deposited ZnIn2Se4 nanocrystalline thin films. Journal of Physics and Chemistry of Solids, 2008, 69, 1747-1752.	4.0	17
54	PRED treatment mediated stable and efficient water oxidation performance of the Fe ₂ O ₃ nano-coral structure. Nanoscale, 2015, 7, 14906-14913.	5.6	17

#	Article	IF	CITATIONS
55	A Synergistic Effect of Surfactant and ZrO2 Underlayer on Photocurrent Enhancement and Cathodic Shift of Nanoporous Fe2O3 Photoanode. Scientific Reports, 2016, 6, 32436.	3.3	17
56	Photoelectrochemical, impedance and optical data for self Sn-diffusion doped Fe 2 O 3 photoanodes fabricated at high temperature by one and two-step annealing methods. Data in Brief, 2015, 5, 796-804.	1.0	16
57	Enhanced photoelectrochemical performance of WO3/Ti photoanode due to in situ formation of a thin interfacial composite layer. Applied Surface Science, 2013, 270, 267-271.	6.1	15
58	Cathodic shift and improved photocurrent performance of cost-effective Fe2O3 photoanodes. International Journal of Hydrogen Energy, 2014, 39, 5575-5579.	7.1	14
59	High-Throughput Screening and Surface Interrogation Studies of Au-Modified Hematite Photoanodes by Scanning Electrochemical Microscopy for Solar Water Splitting. ACS Omega, 2019, 4, 17257-17268.	3.5	13
60	Multistep hydrothermal route for nanocoral architecture of anatase TiO ₂ : synthesis and characterization of dyeâ€sensitized solar cell performance. Progress in Photovoltaics: Research and Applications, 2014, 22, 525-539.	8.1	12
61	Nickel-induced microwheel-like surface morphological evolution of ZnO thin films by spray pyrolysis. Applied Physics A: Materials Science and Processing, 2012, 109, 591-599.	2.3	11
62	Enhanced photoelectrochemical performance of internally porous Au-embedded α-Fe ₂ O ₃ photoanodes for water oxidation. Chemical Communications, 2017, 53, 4278-4281.	4.1	10
63	Delafossite CuFeO ₂ Photocathodes Grown by Direct Liquid Injection Chemical Vapor Deposition for Efficient Photoelectrochemical Water Reduction. Journal of the Electrochemical Society, 2018, 165, H831-H837.	2.9	10
64	Diffusion coefficient and nucleation density studies on electrochemical deposition of aluminum from chloroaluminate ionic liquid electrolytes. Journal of Electroanalytical Chemistry, 2021, 895, 115363.	3.8	9
65	Multilayered large-area WO3films on sheet and mesh-type stainless steel substrates for photoelectrochemical hydrogen generation. International Journal of Energy Research, 2013, 37, 323-330.	4.5	8
66	Gamma irradiation: an efficient way to enhance current carrying properties of Ag/Ppy composite. Journal of Materials Science: Materials in Electronics, 2018, 29, 11151-11158.	2.2	8
67	Review—The Emerging Technologies for Producing Low-Cost Titanium. Journal of the Electrochemical Society, 2021, 168, 042502.	2.9	8
68	Nanocrystals of CuMSnS4 (M = In or Ga) for solar energy conversion applications. Chemical Communications, 2018, 54, 11757-11760.	4.1	7
69	Precious metal-free solar-to-fuel generation: SSM-DSCs powering water splitting with NanoCOT and NiMoZn electrocatalysts. Chemical Communications, 2020, 56, 1569-1572.	4.1	6
70	Electrochemical investigations on spray deposited tin oxide thin films. Solar Energy Materials and Solar Cells, 2007, 91, 859-863.	6.2	5
71	Data on the effect of improved TiO2/FTO interface and Ni(OH)2 cocatalyst on the photoelectrochemical performances and stability of CdS cased ZnIn2S4/TiO2 heterojunction. Data in Brief, 2018, 17, 807-819.	1.0	4
72	Self-Assembled Monolayers of Molybdenum Sulfide Clusters on Au Electrode as Hydrogen Evolution Catalyst for Solar Water Splitting. Inorganics, 2019, 7, 79.	2.7	4

#	Article	IF	CITATIONS
73	Enhanced fill factor for normal nâ€iâ€p planar heterojunction and mesoscopic perovskite solar cells using rutheniumâ€doped TiO 2 electron transporting layer. Progress in Photovoltaics: Research and Applications, 2021, 29, 159-171.	8.1	4
74	Reply to â€~Comments on "Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin filmsâ€â€™. Journal Physics D: Applied Physics, 2008, 41, 228002.	2.8	3
75	Electrodeposition of Titanium Aluminide (TiAl) Alloy from AlCl3–BMIC Ionic Liquid at Low Temperature. Minerals, Metals and Materials Series, 2020, , 1659-1667.	0.4	2
76	Effect of Dissolution of Titanium Ions on Ti Alloys Electrodeposition from EMIC-AlCl3 Ionic Liquid at Low Temperature. Minerals, Metals and Materials Series, 2021, , 141-153.	0.4	0